Equation Aid: The Shroedinger Equation

The Shroedinger equation for a particle with mass moving in one dimension has the form

$$
\frac{-\hbar}{2 m} \frac{\partial^{2} \psi(x, t)}{\partial x^{2}}+U(x) \psi(x, t)=i \hbar \frac{\partial \psi(x, t)}{\partial t}
$$

For a free particle with mass m, such as an electron moving freely through space, $\mathrm{U}(\mathrm{x})=0$, and the Schroedinger equation is of the form

$$
\frac{-\hbar}{2 m} \frac{\partial^{2} \psi(x, t)}{\partial x^{2}}=i \hbar \frac{\partial \psi(x, t)}{\partial t}
$$

Aside: Solutions to the wave equation for waves on a string
For the wave equation for a wave on a string,

$$
\frac{\partial^{2} y}{\partial x^{2}}-\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}=0
$$

we have found two linearly independent solution,
$y(x, t)=A \cos (k x-\omega t)$ and $y(x, t)=A \sin (k x-\omega t)$
with $|v|=\frac{\omega}{k}$
Any other solution is a linear combination of those solutions. The functions
$y(x, t)=e^{i(k x-\omega t)}$ and $y(x, t)=e^{-i(k x-\omega t)}$
are linear combinations of $\cos (k x-\omega t)$ and $\sin (k x-\omega t)$.

$$
\begin{gathered}
e^{i(k x-\omega t)}=\cos (k x-\omega t)+i \sin (k x-\omega t) \\
e^{-i(k x-\omega t)}=\cos (k x-\omega t)-i \sin (k x-\omega t)
\end{gathered}
$$

