Equation Aid: Lab 3 Complex Numbers

The derivative of $\cos (\psi)+i \sin (\psi)$
Since $\frac{d \cos (\psi)}{d \psi}=-\sin (\psi)$ and $\frac{d \sin (\psi)}{d \psi}=\cos (\psi)$ we get

$$
\frac{d \cos (\psi)+i \sin (\psi)}{d \psi}=-\sin (\psi)+i \cos (\psi)
$$

Since $(-1)=i^{2}$, this can be written

$$
\frac{d \cos (\psi)+i \sin (\psi)}{d \psi}=i^{2} \sin (\psi)+i \cos (\psi)=i(\cos (\psi)+i \sin (\psi))
$$

To express this result more formally, let us write $f(\psi)=\cos (\psi)+i \sin (\psi)$. Then

$$
\frac{d f(\psi)}{d \psi}=i f(\psi)
$$

To within a constant i, the function $f(\psi)$ is equal to its own derivative. What function, that you are already familiar with, behaves this way? The exponential function!
Recall that $\frac{d e^{a x}}{d x}=a e^{a x}$.
Thus if we replace x by ψ and a by i, we get

$$
\frac{d e^{i \psi}}{d \psi}=i e^{i \psi}
$$

Division:
Let $z=\frac{z_{1}}{z_{2}}=\frac{z_{1} z_{2}^{*}}{z_{2} z_{2}^{*}}=\frac{z_{1} z_{2}^{*}}{\left|z_{2}\right|^{2}}$. We make the denominator real.
$z=\frac{\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right)}{x_{2}^{2}+y_{2}^{2}}=\frac{x_{1} x_{2}-i x_{1} y_{2}+i y_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}=\frac{\left(x_{1} x_{2}+y_{1} y_{2}\right)+i\left(-x_{1} y_{2}+y_{1} x_{2}\right)}{x_{2}^{2}+y_{2}^{2}}$
If $z=x+i y$, then $x=\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}$ and $y=\frac{-x_{1} y_{2}+y_{1} x_{2}}{x_{2}^{2}+y_{2}^{2}}$. Division mixes the real and imaginary parts of the two numbers.

