A skeptic’s guide to jets
Part 1: Jet spectra

Christine Nattrass
University of Tennessee, Knoxville
A skeptic’s guide to jets
Part 1: Jet spectra

Christine Nattrass
University of Tennessee, Knoxville
Acknowledgements

The following people contributed ideas and/or slides, but of course I take full responsibility for anything you don't like:
Rosi Reed, Megan Connors, Sevil Salur
Abhijit Majumder, Raghav Kunnawalkam Elayavalli
Marta Verweij, Laura Havener
Austin Schmier, Charles Hughes, Will Witt
Questions an experimentalist should ask

- What do I want to learn?
- What am I measuring?
- What assumptions am I making?
- What are the dominant uncertainties?
- How do I compare to models?

The answers for jets are highly non-trivial!
What do I want to learn?
The cartoon picture
Probing the Quark Gluon Plasma

Want a probe which traveled through the collision
QGP is very short-lived (~1-10 fm/c) →
cannot use an external probe
Probes of the Quark Gluon Plasma

Want a probe which traveled through the medium QGP is short lived → need a probe created in the collision
Probes of the Quark Gluon Plasma

Want a probe which traveled through the medium
QGP is short lived → need a probe created in the collision
We expect the medium to be dense → absorb/modify probe
Probes of the Quark Gluon Plasma

nucleus

nucleus

ATLAS

Calorimeter Towers

Christine Nattrass (UTK), uBNL 2020
Probes of the Quark Gluon Plasma
“Simple” example: Single hadrons
Nuclear modification factor

- Measure spectra of probe (jets) and compare to those in p+p collisions or peripheral A+A collisions
- If high-p_T probes (jets) are suppressed, this is evidence of jet quenching

$$R_{AA} = \frac{d^2N_{AA}/dp_Td\eta}{T_{AA}d^2\sigma_{pp}/dp_Td\eta}$$

Enhancement

Suppression

"soft"

"hard"
Nuclear modification factor

- Charged hadrons (colored probes) suppressed in Pb—Pb
- Charged hadrons not suppressed in p—Pb at midrapidity
- Electroweak probes not suppressed in Pb—Pb
Electromagnetic probes – consistent with no modification – medium is transparent to them

Strong probes – significant suppression – medium is opaque to them - even heavy quarks!
What am I measuring?
Definition of a jet
Theoretical calculations
Factorization theorem

- Assumption: Parton distribution functions, perturbative cross section, fragmentation function factorize
- What people really mean by “perturbatively calculable”
 - D and f are explicitly non-perturbative!
 - D is for parton $c \rightarrow$ hadron h
 Not what is experimentally measured
- Most theories for jet quenching modify fragmentation function D

$$
\frac{d^3\sigma^h}{dy \, d^2p_T} = \frac{1}{\pi} \int d \, x_a \int d \, x_b \, f^A(a)(x_a) f^B(b)(x_b) \frac{d\sigma_{ab \rightarrow cX}}{d\hat{t}} \frac{D^h_c(z)}{z}
$$
Jet finders
What is a jet?
What is a jet?

A measurement of a jet is a measurement of a parton.
What is a jet?

A measurement of a jet is a measurement of a parton.
What is a jet?

p+p dijet

Beam pipe
What is a jet?

“I know it when I see it”

US Supreme Court Justice Potter Stewart, Jacobellis v. Ohio
Jet finding algorithms

- Tracks
- Clusters
- Particles

Jet finding algorithm

Jet candidates

- Any list of objects works as input
- Use the same algorithm on theory & experiment
- Output only as good as input
Jet finding in pp collisions

- Jet finder: groups final state particles into jet candidates
 - Anti-k_T algorithm
- Depends on hadronization
- Ideally
 - Infrared safe
 - Colinear safe

Snowmass Accord: Theoretical calculations and experimental measurements should use the same jet finding algorithm. Otherwise they will not be comparable.
Jets in principle

- Jet measures **partons**
- Hadronic degrees of freedom are integrated out
- Algorithms are infrared and collinear safe

Image from: http://www.ok-ads-theorie.physik.uni-mainz.de/Dateien/Zappenhof3.pdf
k_T jet finding algorithm

$\mathbf{k_T} = p_T, \Delta R_{ij} = \sqrt{(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2}$

- For all i,j calculate:

 $d_{ij} = \min\left(\frac{\Delta R_{ij}^2}{R^2} \right)$

 $d_{iB} = p_{T,i}^2$

- Combine smallest d_{ij}

 If d_{iB} smallest, $d_{iB} \rightarrow$ jet

Repeat until no particles left

Jet candidates
anti-k_T jet finding algorithm

Particles, clusters

k_T algorithm

\[k_T = p_T, \Delta R_{ij} = \sqrt{(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2} \]

- For all i,j calculate:
 \[d_{ij} = \min \left(p_{T,i}^{-2}, p_{T,j}^{-2} \right) \frac{\Delta R_{ij}^2}{R^2} \]
 \[d_{iB} = p_{T,i}^{-2} \]
- Combine smallest d_{ij}
 If d_{iB} smallest, $d_{iB} \rightarrow$ jet
Repeat until no particles left

Jet candidates
Cambridge/Aachen jet finding algorithm

Particles, clusters

k_T algorithm

\[k_T = p_T, \Delta R_{ij} = \sqrt{(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2} \]

- For all \(i, j \) calculate:
 - \(d_{iB} = 1 \)
 - \(d_{ij} = \left(\frac{\Delta R_{ij}^2}{R^2} \right) \)
- Combine smallest \(d_{ij} \).
 - If \(d_{iB} \) smallest, \(d_{iB} \rightarrow \text{jet} \)
 - Repeat until no particles left

Jet candidates
A jet is what a jet finder finds.
Jet cross-section in pp
\[\sqrt{s} = 2.76 \text{ TeV}, R = 0.2 \text{ Inclusive} \]

Green and magenta bands: NLO on Parton level
Blue band: NLO + hadronization
Hadronization calculations necessary to describe data

arXiv:1301.3475
PLB: 10.1016/j.physletb.2013.04.026
Jet ratios in pp

$\sqrt{s} = 2.76$ TeV, $R = 0.2$, 0.4 Inclusive

\[\sigma(R=0.2)/\sigma(R=0.4) \]

- anti-k_T, $|\eta|<0.5$
- ALICE pp $\sqrt{s} = 2.76$ TeV
- Systematic uncertainty
- LO (G. Soyez)
- NLO (G. Soyez)
- NLO + Hadronization (G. Soyez)

arXiv:1301.3475
PLB: 10.1016/j.physletb.2013.04.026
Mini-summary

- Jets are not partons
- Good jet finders:
 - Infrared and collinear safe
 - k_T, anti-k_T, Cambridge/Aachen, SISCone
- Jet is defined by jet finder, its parameters
- PDFs, fragmentation functions non-perturbative
 → all jet measurements sensitive to somewhat non-perturbative effects
- Good agreement between theory and experiment
Jets in A+A collisions
What assumptions am I making?
p+p vs A+A

p+p di-jet event in STAR

Central Au+Au collision in STAR
Signal vs Background:
The standard paradigm

Background

Signal
Signal vs Background:
The standard paradigm

Background

Combinatorial jets

Signal
Signal vs Background:
The standard paradigm

Background

Combinatorial jets = “fake” jets

Signal
Signal vs Background:
The standard paradigm

*Some gray areas

Combinatorial jets

Background

Signal

*Some gray areas
Jet finding in AA collisions

- Jet finder: groups final state particles into jet candidates
 - Anti-k_T algorithm

- Combinatorial jet candidates
- Energy smearing from background
- Sensitive to methods to suppress combinatorial jets and correct energy
- Focus on narrow/high energy jets
TennGen background generator

Event properties
- Even event planes fixed at $\Psi=0$
- Odd planes at random ϕ
- Multiplies from ALICE PRC88 (2013) 044910

Track properties
- Random p_T
- v_n
- No jets! No resonances
- Emulates hydro correlations

Momentum spectra
- Blast Wave Fit
- K^+ ALICE PLB720 (2013) 52-62

Polynomial Fit
- v_n
- ALICE JHEP 1609 (2016) 164

Christine Nattrass (UTK), uBNL 2020
PYTHIA Angantyr

Based on PYTHIA 8
Sjöstrand, Mrenna & Skands,
JHEP05 (2006) 026

Based on Fritiof & wounded nucleons

N-N collisions w/fluctuating radii → fluctuating σ

Lots of jets! And resonances!
No hydrodynamics, no jet quenching
Area-based background subtraction

\[\phi, \eta, E, n, e, g (a, r, b, u, n, i, t, s) \]

\[k_T = p_T, \Delta R_{ij} = \sqrt{(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2} \]

- For all \(i,j \) calculate:
 \[d_{ij} = \min \left(p_{T,i}^2, p_{T,j}^2 \right) \Delta R_{ij}^2 \]
 \[d_{iB} = p_{T,i} \]
- Combine smallest \(d_{ij} \)
 If \(d_{iB} \) smallest, \(d_{iB} \rightarrow \text{jet} \)
Repeat until no particles left

Jet candidates

Median \(\rho = p_T / A \)

\[p_T^{\text{jet}} = p_T^{\text{reco}} - \rho_{\text{median}} A^{\text{jet}} \]

Christine Nattrass (UTK), uBNL 2020
Background density ρ

FastJet k_t ($p_t^{\text{min}} = 0.15 \text{ GeV/c}$)

Fit: $(-3.3\pm0.3) \text{ GeV/c} + (0.0623\pm0.0002) \text{ GeV/c} \times N_{\text{raw}}^{\text{input}}$

$\rho (\text{GeV/c})$ vs $N_{\text{raw}}^{\text{input}}$

Fit: $-1.20 \text{ GeV/c} + 0.0611 \text{ GeV/c} \times N_{\text{raw}}^{\text{input}}$

ALICE

Pb-Pb $\sqrt{s} = 2.76 \text{ TeV}$

Random cones

R=0.4

Real jets

Excluded

Excluded

X
Random cones in ALICE

- Estimate ρ
 - k_T jet finder \rightarrow jet candidates
 - $\rho = \text{Median}(p_T/A)$
- Draw Random cone

$$\delta p_T = p_T^{\text{reco}} - \rho A$$
Random cones

\[\delta p_T = p_{T,\text{cone}} - \rho A_{\text{cone}} \ (\text{GeV}/c) \]

\[\delta p_T, \ (0\text{-}10\%) \ \text{Pb-Pb} \]
- Data
 \[\mu = -0.50 \pm 0.01 \ (\text{GeV}/c) \]
 \[\sigma = 9.72 \pm 0.01 \ (\text{GeV}/c) \]
- Angantyr
 \[\mu = -1.74 \pm 0.30 \ (\text{GeV}/c) \]
 \[\sigma = 9.97 \pm 0.18 \ (\text{GeV}/c) \]
- Background Generator
 \[\mu = -0.48 \pm 0.12 \ (\text{GeV}/c) \]
 \[\sigma = 7.36 \pm 0.05 \ (\text{GeV}/c) \]

JHEP 03 (2012) 053

\[f : a_p = 144.3, \ a_b = 1.4 \ c/\text{GeV} \]

Christine Nattrass (UTK), uBNL 2020
Shape of width of the distribution

Single particle spectra

\[f_{\Gamma}(p_T, p, b) = \frac{b}{\Gamma(p)} (bp_T)^{p-1} e^{-bx} \]

\[\frac{dN}{dy} \propto f_{\Gamma}(p_T, 2, b) = b^2 p_T e^{-k p_T} \]

\[\mu_{p_T} = \frac{p}{b}, \sigma_{p_T} = \sqrt{p} / b \]

\[N = \frac{A_{\text{total}}}{\pi R^2}, \quad \mu_{\text{total}} = \frac{N p}{b} = N \mu_{p_T}, \quad \sigma_{\text{total}} = \sqrt{N p} / b = \sqrt{N} \sigma_{p_T} \]

Add Poissonian fluctuations in N:

\[\sigma_{\text{total}} = \sqrt{N \sigma_{p_T}^2 + N \mu_{p_T}^2} \]

Add non-Poissonian fluctuations in N due to flow:

\[\sigma_{\text{total}} = \sqrt{\frac{N \sigma_{p_T}^2 + (N + 2 \sum_n v_n^2) \mu_{p_T}^2}{}} \]

Tannenbaum, PLB(498),1–2,Pg.29-34(2001)
Width vs multiplicity

\[\sigma(p_T) (\text{GeV}/c) \]

- random cones
- RC (w/o lead. jet)
- RC randomized γ from Poissonian limit
- Poissonian limit + \(v_2 \) (\(v_{\text{np}}^2 = 2 N_A^2 v_2^2 \))
- Poissonian limit + \(v_2, v_3 \) (\(v_{\text{np}}^2 = 2 N_A^2 (v_2^2 + v_3^2) \))

\[\delta p_T \text{ width (GeV)/c} \]

- Background Generator, no \(v_n \)
- Background Generator, with \(v_n \)
- Equation 3
- Equation 4

Data / Prediction

- Small deviations

\(\text{Pb-Pb } \sqrt{s} = 2.76 \text{ TeV} \)
\(R = 0.4, p_T^{\text{min}} = 0.15 \text{ GeV}/c \)

TennGen
Mixed events

- Gets background up to a normalization factor
- Good agreement with the data… but 20% discrepancies still within uncertainties
- In measurement with background suppressed (h-jet correlations)
- Did not see such agreement at the LHC
Width vs multiplicity

\[\sigma(p_T) \text{ (GeV/c)} \]

- random cones
- RC (w/o lead. jet)
- RC randomized \(\gamma \phi \)
- Poissonian limit
- Poissonian limit + \(v_2 \) (\(\sigma(p_T) = 2N_A v_2^2 \))
- Poissonian limit + \(v_2 + v_3 \) (\(\sigma(p_T) = 2N_A (v_2^2 + v_3^2) \))

Pb-Pb \(\sqrt{s} = 2.76 \text{ TeV} \)

\[N_{\text{raw}} \text{ vs } N_{\text{input}} \]

Data / Prediction

Angantyr

Doesn’t go away with random track orientation!
Shape of width of the distribution

Single particle spectra

\[f_\Gamma(p_T, p, b) = \frac{b}{\Gamma(p)}(bp_T)^{p-1}e^{-bx} \]

\[\frac{dN}{dy} \propto f_\Gamma(p_T, 2, b) = b^2 p_T e^{-k p_T} \]

\[\mu_{p_T} = \frac{p}{b}, \sigma_{p_T} = \frac{\sqrt{p}}{b} \]

\[\Sigma p_T of N particles \to N\text{-fold convolution:} \]

\[f_N(p_T, p, b) = f_\Gamma(p_T, Np, b) \]

\[\frac{d\rho_T^{total}}{dy} \propto f_N(p_T, Np, b) \]

\[N = \frac{N_{total}}{A_{total}} \pi R^2 \]

\[\mu_{total} = \frac{Np}{b} = N \mu_{p_T}, \sigma_{total} = \frac{\sqrt{Np}}{b} = \sqrt{N} \sigma_{p_T} \]

Add Poissonian fluctuations in N:

\[\sigma_{total} = \sqrt{N \sigma_{p_T}^2 + N \mu_{p_T}^2} \]

Add non-Poissonian fluctuations in N due to flow

\[\sigma_{total} = \sqrt{N \sigma_{p_T}^2 + (N + 2 \sum_n n^2) \mu_{p_T}^2} \]

Assumes shape

Tannenbaum, PLB(498),1–2,Pg.29-34(2001)

Assumes uncorrelated number fluctuations

Christine Nattrass (UTK), uBNL 2020
Mini-summary

- Jet finders put all input clusters, tracks in a jet candidate
- Background is *dominated* by random particles
 - But 5% effects from flow
- Models have background too!
 - And it doesn’t agree with data!
 - Sensitive to multiplicity, shape of spectrum
Jets in A+A collisions: Dealing with background
Focus on smaller angles

- **Pros**
 - Background is smaller
 - Background fluctuations smaller

- **Cons:**
 - Modifications expected at higher R
 - Biases sample towards quarks

Aside: “quark” and “gluon” jet only defined at leading order.
Focus on high p_T

- Pros:
 - Reduces combinatorial background

- Cons:
 - Cuts signal where we expect modifications
 - Could bias towards partons which have not interacted
 - Biases sample towards quark jets

“Quark” and “gluon” jets only defined at leading order!
Area-based subtraction

- ALICE/STAR
- Require leading track $p_T > 5$ GeV/c
 - Suppresses combinatorial “jets”
 - Biases fragmentation
- No threshold on constituents
- Limited to small R

Combinatorial “jets”
Survivor bias

- **WWII Example**: holes planes returning indicate where it’s safer to get hit
- We’re looking at the jets which remain
What you see depends on what you're looking for
Bias & background

- **Experimental background subtraction methods**: complex, make assumptions, apply biases
- **Survivor bias**: Modified jets probably look more like the medium
- **Quark/Gluon bias**:
 - Quark jets are narrower, have fewer tracks, fragment harder [Z Phys C 68, 179-201 (1995), Z Phys C 70, 179-196 (1996),]
 - Gluon jets reconstructed with k_T algorithm have more particles than jets reconstructed with anti-k_T algorithm [Phys. Rev. D 45, 1448 (1992)]
 - Gluon jets fragment into more baryons [EPJC 8, 241-254, 1998]
- **Fragmentation bias**: Experimental measurements explicitly select jets with hard fragments
Iterative procedure

- Used by ATLAS & CMS
- ATLAS
 - Calorimeter jets: Reconstruct jets with R=0.2. v_2 modulated $<\text{Bkgd}>$ estimated by energy in calorimeters excluding jets with at least one tower with $E_{\text{tower}} > <E_{\text{tower}}>$
 - Track jets: Use tracks with $p_T > 4$ GeV/c
 - Calorimeter jets from above with $E > 25$ GeV and track jets with $p_T > 10$ GeV/c used to estimate background again.
 - Calorimeter tracks matching one track with $p_T > 7$ GeV/c or containing a high energy cluster $E > 7$ GeV are used for analysis down to $E_{\text{jet}} = 20$ GeV

Constituent biases don't matter that much up here

But they do matter down here!
Jet R_{AA}

LHC Run1 Data; PbPb (0-10%) $\sqrt{s_{NN}} = 2.76$ TeV

- CMS 1609.05383
- ALICE PLB 746(2015) 1-14
- ATLAS PRL 114(2015) no.7

R_{AA} vs Jet p_T [GeV/c]

arXiv:1705.01974

Christine Nattrass (UTK), uBNL 2020
Jet R_{AA}

LHC Run1 Data; PbPb (0-10%) $\sqrt{s_{NN}} = 2.76$ TeV

CMS 1609.05383
ALICE PLB 746(2015) 1-14

$R = 0.2$
$R = 0.3$
$R = 0.4$
$R = 0.4$

arXiv:1705.01974

Tension between ATLAS & ALICE/CMS
Background subtraction method:

- **Calorimeter jets**: Reconstruct jets with $R=0.2$. v_2 modulated $<\text{Bkgd}>$ estimated by energy in calorimeters excluding jets with at least one tower with $E_{\text{tower}} < <E_{\text{tower}}>$

 Track jets: Use tracks with $p_T > 4$ GeV/c

- Calorimeter jets from above with $E > 25$ GeV and track jets with $p_T > 10$ GeV/c used to estimate background again.

- Calorimeter tracks matching one track with $p_T > 7$ GeV/c or containing a high energy cluster $E > 7$ GeV are used for analysis down to $E_{\text{jet}} = 20$ GeV

What you see depends on where you look

CMS Preliminary \(L_{\text{int}} = 150 \mu \text{b}^{-1} \)

- 2010, 0-30%, Leading jet
- 2011, 0-10%, Inclusive jet
- 2011, 10-30%, Inclusive jet

\(p_T > 100 \text{GeV/c} \)

\(\xi = \ln(1/z) \)

\(z = \frac{p_T}{E_{\text{jet}}} \)

High \(p_T \)

Low \(p_T \)

JHEP10(2012)087
Mini-summary

• Most studies do one or more of the following:
 – Explicitly apply a (non-perturbative) bias
 – Implicitly apply a (non-perturbative) bias
 – Focus on small R
 – Focus on high pT

• May also → survivor bias

• Background subtraction should be part of definition of algorithm
What are the dominant uncertainties?
Analysis steps

Tracks → Jet finding algorithm → Jet candidates → Background subtraction

Jet spectrum smeared by energy resolution, background fluctuations

Unfolding – corrects for single track reco ε, E resolution, background fluctuations

Corrected spectra
Unfolding

\[\tilde{\nu} = R\tilde{\mu} + \tilde{\beta} \]

- \(\tilde{\nu}\) : the “true” histogram
- \(\nu\) : the actual data we measure
- \(\tilde{\beta}\) : background
- \(R\) : the response matrix

\[\nu_i = \sum_{j=1}^{M} (R_{ij}\mu_j) + \beta_i \]
Simple Solution (Inversion)

- Rearrange $\tilde{v} = R\tilde{\mu} + \tilde{\beta}$ to get $\tilde{\mu} = R^{-1}(\tilde{v} - \tilde{\beta})$

- Problem: we don’t have \tilde{v}, we have \tilde{n}, the measured data, which is subject to statistical fluctuations.

- We assume n_i is the maximum likelihood estimator for ν_i, then solve for the estimator $\hat{\mu} = R^{-1}(\tilde{n} - \tilde{\beta})$.

- R^{-1} is obtained from R through simple matrix inversion
Iterative Bayesian Method

- Using prior knowledge, start with an initial guess for the distribution of true histograms $P^0 (\mu)$

- Use Bayes’ Theorem to invert the response matrix $P(\hat{\mu}_i | v_j^{sig}) = \frac{P(v_j^{sig} | \hat{\mu}_i) P^0(\hat{\mu}_i)}{\sum_{l=1}^{M} P(v_j^{sig} | \hat{\mu}_l) P^0(\hat{\mu}_l)}$

- $\hat{\mu}_i = \frac{1}{\epsilon_i} \sum_{j=1}^{N} v_j^{sig} P(\hat{\mu}_i | v_j^{sig})$ where ϵ_i is the detector efficiency

- Plug in the newly obtained $P(\hat{\mu}_i | v_j^{sig})$ and $\hat{\mu}_i$ as new priors, then repeat

- Terminate before the wildly oscillating true inverse is reached (usually ~ 4 iterations) to preserve some smoothness
RooUnfold-Bayes

- RooUnfoldTest.cxx
- method = Bayes
- Exponential training and testing
About unfolding...

- d'Agostini (author of Bayesian unfolding algorithm) says you should avoid it if you can

- Necessary when experimental resolution is poor
 - Ex: Single particle spectra $\frac{\sigma_p}{w_{bin}} \ll 1$ → unfolding unnecessary
 - Ex: Jet spectra $\frac{\sigma_p}{w_{bin}} \approx 1$ → unfolding necessary

- Algorithm assumes response matrix is correct
 - Matching reconstructed and simulated jets is non-trivial!

- Corrects for multiple experimental effects simultaneously
 - Difficult to disentangle different effects
 - Leads to non-trivial uncertainty correlations between data points due to algorithm
 - May not handle systematic correlations between effects correctly
Jets in ALICE: Response Matrix Construction

\[\text{RM}_{\text{det}} \times \text{RM}_{\text{bkg}} = \text{RM} \]

\(\text{RM}_{\text{det}} \) and \(\text{RM}_{\text{bkg}} \) are approximately factorizable.

- \(\text{RM}_{\text{det}} \): Detector response matrix
- \(\text{RM}_{\text{bkg}} \): Background fluctuation matrix
- \(\text{RM}_{\text{tot}} = \text{RM}_{\text{bkg}} \times \text{RM}_{\text{det}} \)

- Anti-\(k_T \) \(R = 0.2 \)
- \(p_{T,\text{track}} > 0.15 \text{ GeV/c} \)
- \(E_{T,\text{cluster}} > 0.30 \text{ GeV} \)
- \(p_{T,\text{leading}} > 5 \text{ GeV/c} \)

\[\text{Pb-Pb \(s_{NN} = 2.76 \text{ TeV} \) 0-10\% Centrality} \]

Christine Nattrass (UTK), uBNL 2020

Pythia \(s = 2.76 \text{ TeV} \)

ALICE PERFORMANCE 19/06/2013

ALICE PERFORMANCE 15/10/2012
Jets in ALICE: Response Matrix Construction

\begin{align*}
\text{RM}_{\text{det}} \times \text{RM}_{\text{bkg}} &= \text{RM} \\
\text{RM}_{\text{bkg}} \quad \text{and} \quad \text{RM}_{\text{det}} \quad \text{are approximately factorizable}
\end{align*}

\text{Anti}-k_T \ R=0.2 \\
\quad p_{T,\text{track}} > 0.15 \ \text{GeV/c} \\
\quad E_{\text{T,cluster}} > 0.30 \ \text{GeV} \\
\quad p_{T,\text{leading}} > 5 \ \text{GeV/c}

\begin{align*}
\text{(a) } \text{RM}_{\text{det}} & \quad \text{Detector response matrix} \\
\text{(b) } \text{RM}_{\text{bkg}} & \quad \text{Background fluctuation matrix} \\
\text{(c) } \text{RM}_{\text{tot}} &= \text{RM}_{\text{bkg}} \times \text{RM}_{\text{det}}
\end{align*}

\text{Pb-Pb} \ \sqrt{s_{NN}}=2.76 \ \text{TeV} \\
0-10\% \text{ Centrality}

\text{ALICE PERFORMANCE} \\
15/10/2012 \\
\text{ALICE PERFORMANCE} \\
19/08/2013

Christine Nattrass (UTK), uBNL 2020
Jets in ALICE: Response Matrix Construction

RM_{det} and **RM_{bkg}** are approximately factorizable

Anti-\(k_T\) \(R = 0.2\)

- \(p_{T,\text{track}} > 0.15\) GeV/c
- \(E_{T,\text{cluster}} > 0.30\) GeV
- \(p_{T,\text{leading}} > 5\) GeV/c

(a) \(RM_{\text{det}}\) Detector response matrix
(b) \(RM_{\text{bkg}}\) Background fluctuation matrix
(c) \(RM_{\text{tot}} = RM_{\text{bkg}} \times RM_{\text{det}}\)

**Pb-Pb \(s_{NN} = 2.76\) TeV
0-10\% Centrality**

ALICE PERFORMANCE 15/10/2012

Christine Nattrass (UTK), uBNL 2020
Response matrix includes assumptions about

- Detector response
 - Including particle composition of jets!
- Fragmentation and hadronization
 - How does hadronization influence the width of your jet?
- Background and/or background fluctuations
- How you match reconstructed (“detector level”) and true (“particle level”) jets
Jet Momentum Resolution

Jet resolution
- Dominated by background fluctuations at low momentum
- Dominated by detector effects at high momentum
Mini-summary

- Jet energy resolution is fundamentally large
 - Measuring multiple correlated particles!
 - Be skeptical of jet measurements with <10% uncertainties
- Unfolding is complicated, often unstable, and hard
- Construction of response matrix includes several assumptions
Jets in A+A collisions: How to compare to models
Snowmass Accord: Apply the same algorithm to data and your model. Then the measurement and the calculation are the same.
Rivet: Apply the same algorithm to data and your model. Then the measurement and the calculation are the same.
What is Rivet?
Monte Carlo Model

HepMC

HEPData → Rivet

Comparison to data

Christine Nattrass (UTK), uBNL 2020
Why use Rivet?

- Facilitates comparisons between Monte Carlos and data
- It’s not that hard
- It preserves analysis details
Rivetizing Heavy Ion Collisions at RHIC 2020

November 30, 2020 to December 4, 2020
Online
US/Eastern timezone

Workshop to implement RHIC analyses in Rivet

Starts Nov 30, 2020, 9:00 AM
Ends Dec 4, 2020, 12:00 PM
US/Eastern

Antonio Carlos Oliveira da Silva
Christine Nattrass

Registration
Registration for this event is currently open.

Support
christine.nattrass@utk.edu
antonio.silva@cern.ch

There are no materials yet.
Jets in ALICE: Response Matrix Construction

\[\text{RM}_{\text{det}} \times \text{RM}_{\text{bkg}} = \text{RM} \]

\(\text{RM}_{\text{bkg}} \) and \(\text{RM}_{\text{det}} \) are approximately factorizable.
Analysis steps: Full Monte Carlo

1. **Particles**
2. **Jet finding algorithm**
3. **Jet candidates**
4. **Background subtraction**

- Jet spectrum smeared by energy resolution
- Unfolding – corrects for background fluctuations
- Corrected spectra

Graphs
- Lead-lead (Pb-Pb) at $\sqrt{s_{NN}} = 2.76$ TeV
 - Jet spectrum (left)
 - Unfolded spectra (center)
 - Corrected spectra (right)
Comparison to data

Unfold to correct for fluctuations

Christine Nattrass (UTK), uBNL 2020
Mini-summary

• Experimental techniques can bias measurement in subtle ways
 – Background subtraction
 – Kinematic cuts
 – Choice of jet finder, R
 – Centrality determination
 – Technique for finding reaction plane
• Unclear how these influence the measurement
• Safest to do the same analysis on data and model
 – But unfolding is necessary in a full Monte Carlo model!
A skeptic’s guide to jets
Part 2: Where we are going

Christine Nattrass
University of Tennessee, Knoxville
There is no particionic energy loss.
There is only partionic energy redistribution.
What is jet (sub)structure?

A Whatever I am measuring!
B Any new jet observable
C Any observable which measures the structure of jets.
D A cool buzzword
E I don’t know but it sounds cool and gets me talks/grants
Types of observables

I. Minimally sensitive to structure

Observables
- (Jet) R_{AA}
- A_j
- I_{AA}
- (Jet) v_2

Jet properties:
- E

II. Sensitive to $<$structure$>$ of $<$jets$>$

Observables
- Fragmentation functions
- Jet shapes
- Correlations
- ...

Jet properties:
- E
- Const. p_T
- ϕ, η

Average background subtraction OK

Higher precision

Higher/different sensitivity?

III. Sensitive to distribution of structures

Observables
- Girth
- Dispersion
- $p_T D$
- Jet mass
- ...

Jet properties:
- E
- Const. p_T
- ϕ, η

IV. Sensitive to parton shower structure

Observables
- Grooming
- $N_{subjettiness}$
- ...

Jet properties:
- E
- Const. p_T
- ϕ, η
- Multi-const. correlations

Jets required

Need new background subtraction technique

Christine Nattrass (UTK), uBNL 2020
Type I: Energy loss
Hadron-jet correlations

\[\Delta I_{AA} = \Delta \frac{P_{\text{recoil}}}{P_{\text{PYTHIA}}} \]

Jet v2 suppression

\[\gamma \text{-jet correlations} \]

\[\gamma \text{-hadron correlations} \]

\[[\text{Phys. Rev. C 90, 014909 (2014)}] \]

\[[\text{Phys. Rev. Lett. 111, 152301 (2013)}] \]

\[[\text{Phys. Lett. B 753 (2016) 511-525}] \]

\[[\text{Phys. Rev. C 96, 024905 (2017)}] \]

\[[\text{JHEP 09 (2015) 170}] \]

\[[\text{Phys. Rev. C 90, 014909 (2014)}] \]

\[[\text{Phys. Rev. D 82, 072001 (2010)}] \]

\[[\text{Phys. Rev. C 90, 014909, 2010}] \]

\[[\text{Physics Letters B 760 (2016)}] \]
Type II: Fragmentation
Fragmentation functions with jets

Leading jet

\[p_T^{\text{leading}} - p_T^{\text{subleading}} \]

\[A_j = \frac{p_T^{\text{leading}} - p_T^{\text{subleading}}}{p_T^{\text{leading}} + p_T^{\text{subleading}}} \]

Di-jet asymmetry

Central Au+Au

anti-\(k_T\) R=0.4

Jets get wider and constituents get softer

\[z = \frac{p_T}{E_T} \]

Di-hadron correlations

[Lots of papers]

Jet shapes

Type III: Distribution of properties
Jet mass

\[M = \sqrt{p^2 - p_T^2 - p_z^2} , \quad p = \sum_{i=1}^{n} p_{T_i} \cosh \eta_i , \quad p_z = \sum_{i=1}^{n} p_{T_i} \sinh \eta_i . \]

- Quenching models (JEWEL, Q-PYTHIA) show a larger mass than pp-like PYTHIA jets
- Pb-Pb measurement can discriminate among these predictions

arXiv:1702.00804

Christine Nattrass (UTK), uBNL 2020
\[g = \sum_{i \in \text{jet}} \frac{p_T^i}{p_T} r_i \]

\[p_T D = \sqrt{\frac{\sum_{i \in \text{jet}} (p_T^i)^2}{\sum_{i \in \text{jet}} p_T^i}} \]

\[\text{LeSub} = p_T^{\text{leading}} - p_T^{\text{subleading}} \]

Jacques Nattress (UTK), uBNL 2020

Jets are slightly more collimated than in pp

Agrees with PYTHIA
Type IV: Declustering

Note: These slides are from Laura Havener

*A selection. Don’t be offended if I skip your favorite.
New tool: jet splittings

Interested in the original parton shower splittings of the jet
Which form subjets inside the jet!
Jet splittings: in vacuum

Vacuum jets splittings form at different times

\[t_f^{\text{vac}} = \frac{1}{\theta^2 \omega} \]

Wider jets form earlier and narrower jets form later
Jet splittings: in medium

Vacuum splittings in/out of the medium

\[t_f^{\text{vac}} = \frac{1}{\theta^2 \omega} \]

Medium-induced splittings from gluon radiation

\[t_g^{\text{med}} = \sqrt{\frac{\omega}{\hat{q}}} \]
Jet splittings: in medium

Coherence: subjets *unresolved* and jet loses energy as a whole.

Decoherence: medium *resolves* the subjets resulting in a stronger e-loss.

Medium-induced splittings

Vacuum splittings inside medium, resolved

Vacuum splittings inside medium, unresolved

Vacuum splittings outside medium
Exploring the Lund Plane: in vacuum

- Lund Diagram*: phase space of jet splitting
 JHEP 12 (2018)
- \(\log(k_T) > 0 \) separates perturbative from non-perturbative regime
- Formation time: how long until the splitting occurred
 \[t_f = \frac{1}{(1-z)k_T \Delta R} \]

Y. L. Dokshitzer, et.al.

\[p_{T1} = (1-z)p_T \]
\[p_{T2} = zp_T \]

\(\ln(k_T) \)
\(\ln(1/\Delta R) \)

Y. L. Dokshitzer, et.al.

arXiv:1808.03689
Soft drop grooming

- Reconstruct anti-k_T $R=0.4$ charged jets with jet-by-jet constituent background subtraction*

*IHEP 06 (2014) 092
Soft drop grooming

- Reconstruct anti-k_T $R=0.4$ charged jets with *jet-by-jet constituent background subtraction*

Remove from each constituent inside the jet instead of from the whole jet

Jet-by-jet:

$$p_{T}^{\text{jet,corr}} = p_{T}^{\text{jet}} - \rho A$$

Track-by-track (i) in jet:

$$p_{T}^{i,\text{corr}} = p_{T}^{i} - \rho A$$

JHEP 06 (2014) 092
Groomed variables

- Soft drop grooming variables probe jet splitting

 \[z_g = \frac{\min(p_{Ti}, p_{Tk})}{p_{Ti} + p_{Tk}} \]

 \[R_g = \sqrt{\Delta \eta^2 + \Delta \phi^2} \]

 How symmetric is the jet splitting?

 How far apart are the subjets?

 \[n_{S0} \text{: number of splittings passing Soft Drop} \]

 Number of subjets within a jet?
z_g: jet splitting

$z_g = \frac{\min(p_{T_i}, p_{T_1})}{p_{T_i} - p_{T_1}}$

asymmetric splitting: low z_g

symmetric splitting: high z_g

Suppression of symmetric splittings
z_g: opening angle

Wide: more significant suppression of symmetric splittings

Wide $R_g > 0.2$

Collimated $R_g < 0.1$

Narrow splittings enhanced

Christine Nattrass (UTK), uBNL 2020
Background
Unfolding: jet splitting

Uncorrelated background leads to subjets being picked up as incorrect or “fake” splittings

dominate at low z_g

and at large R_g

gone in n_{SD}?

Non-diagonal response prohibits unfolding
Mini-summary

- “Jet substructure” is used inconsistently
- Search for new observables
 - Haven’t really used most of the “old” ones!
- So far it’s a mixed bag
 - Many are insensitive
 - Some may have some promise
 - Background tricky
JETSCAPE
JET collaboration

\[\chi^2_{\text{minimization}} \]

QGP brick + jet

Data

\[\hat{q} = 1.2 \pm 0.3 \ \text{GeV}^2 \]
\[\hat{q} = 1.9 \pm 0.7 \ \text{GeV}^2 \]

Christine Nattrass (UTK), uBNL 2020
Bayesian Statistical Analysis
Models and Data Analysis Initiative

http://madai.us

Model emulation
1) Run full model ~1000 times
2) MCMC parameter search uses emulator (interpolator) in lieu of full model

Monte Carlo models

Data

Prior

Posterior

Constraint of QGP properties

Christine Nattrass (UTK), uBNL 2020
JETSCAPE Event generator

Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope

http://jetscape.wayne.edu/

Realistic medium

Realistic jets

Realistic Monte Carlo Model

Experimental techniques

Realistic theoretical calculations

Christine Nattrass (UTK), uBNL 2020
Event Generator + Bayesian Statistical analysis

Data

Realistic theoretical calculations

Bayesian Statistical Analysis

Constraint of QGP properties

Christine Nattrass (UTK), uBNL 2020
Conclusions
Conclusions

- Jets are complicated and hard to measure to high precision
- Much of the physics we want does not require them
- Extra insight from studying them anyways
- Be skeptical, especially of background subtraction
- Make sure the measurement is comparable to model
The End
Exploring the Lund Plane: in medium

- Jet splittings in heavy-ion (HI) collisions
 - Splittings happen at different times
 - Earlier/wider splittings experience more medium
 - Vacuum splittings vs. non-perturbative in-medium splittings
 - Coherence vs. decoherence

\[p_{T1} = (1-z)p_T \]
\[p_{T2} = zp_T \]
Exploring the Lund Plane: in medium

- Jet splittings in heavy-ion (HI) collisions

 1: Vacuum splitting outside of medium

 2: Vacuum splitting in-medium, resolved (decoherence)

 3: Vacuum splittings in-medium, unresolved (coherence)

 4: Medium-induced splittings
Jets in ALICE: Response matrix RM_det

RM_det quantifies detector response to jets

- “Particle” level jets – defined by jet finder on MC particles
- Pythia with Pb-Pb tracking efficiency
- “Detector” level jets – defined by jet finder after event reconstruction through GEANT
- Particle level jets are geometrically matched to detector level jets
- Matrix has a dependence on spectral shape and fragmentation

Jet-finding efficiency is probability of a matched particle level jet

Pythia \sqrt{s} = 2.76 TeV

- Leading track $p_T > 5$ GeV/c
- $R = 0.2$

ALICE PERFORMANCE

25/06/2013

ALICE PERFORMANCE

19/06/2013

Pythia $\sqrt{s} = 2.76$ TeV

ALICE PERFORMANCE

19/06/2013

Leading track $p_T > 5$ GeV/c

R = 0.2

- Particle Level
- Detector Level

Christine Nattrass (UTK), uBNL 2020
Modified fragmentation

- Enhancement at low z
- No modification/enhancement at high z?

\[z = \frac{p_T}{E_Y} \]
n_{SD}: iterative declustering

New ALICE measurement at 5.02 TeV

Modification: enhancement at small n_{SD} and suppression at intermediate n_{SD}

Consistent with wider/earlier being suppressed in the medium, leading to more jets with lower n_{SD}

arXiv:1907.11248v1
Di-jet asymmetry

Anti-k_T R=0.4, $p_T^{\text{Leading}}>20 \text{ GeV}$ & $p_T^{\text{SubLeading}}>10 \text{ GeV}$ with $p_T^{\text{cut}}>2 \text{ GeV}/c$

Au+Au di-jets more imbalanced than p+p for $p_T^{\text{cut}}>2 \text{ GeV}/c$

Kolja Kauder, RHIC/AGS
User's Meeting 2016
arXiv:1609.03878

Sys. Uncertainties:
- Tracking: 6%
- Tower energy scale: 2%

$A_j = \frac{p_T^{\text{Leading}} - p_T^{\text{Subleading}}}{p_T^{\text{Leading}} + p_T^{\text{Subleading}}}$

Au+Au di-jets more imbalanced than p+p for $p_T^{\text{cut}}>2 \text{ GeV}/c$

Central Au+Au
anti-k_T, R=0.4

Preliminary

Christine Nattrass (UTK), uBNL 2020

A_j for matched di-jets (R=0.4)
Width vs multiplicity

Discrepancy not from an excess of jets!
Jet-hadron correlations

- Jets are broader, constituents are sottter
- Also seen in:
 - Di-hadron correlations [Lots of papers]
 - Dijet asymmetry with soft constituents [PRL119 (2017) 62301]