

Christine Nattrass University of Tennessee at Knoxville

Di-hadron correlations

Di-hadron correlations

Di-hadron correlations

Relativistic Heavy Ion Collider

PHOBOS

- Coverage:
 - With tracking: $2x (0 < \phi < 0.2); 0 < \eta < 1.5$ Without tracking:

 $0 < \phi < 2\pi; -3 < \eta < 3$

Coverage:

 $0 < \phi < 2\pi; -1 < \eta < 1$

 $2x(0 < \phi < \pi/2); -0.35 < \eta < 0.35$ *Christine Nattrass (UTK), WISH, 8 Sept. 2010*

Jets – azimuthal correlations

At RHIC energies, jets are dominantly produced as di-jets

Assume that a high- p_{T} trigger particle comes from a jet

Look at distribution of high- p_{T} associated particles relative to trigger

 $p+p \rightarrow dijet$

Christine Nattrass (UTK), WISH, 8 Sept. 2010

Jets – azimuthal correlations

At RHIC energies, jets are dominantly produced as di-jets

Assume that a high- p_{T} trigger particle comes from a jet

Look at distribution of high- p_{T} associated particles relative to trigger

 $p+p \rightarrow dijet$

Jets – azimuthal correlations

The away-side jet is quenched in Au+Au collisions

But at lower p_T ...

Near-side, away-side: excess yield in Au+Au relative to p+p

d+Au

In two dimensions in Au+Au

In two dimensions in Au+Au

Simple picture

• Jet-like correlation: Dominantly produced by fragmentation

Simple picture

- Jet-like correlation: Dominantly produced by fragmentation
- Ridge: Two classes of models
 - Partonic energy loss in the medium
 - Correlation of trigger with bulk

• Two component model:

Di-hadron correlations are composed of

- Correlations arising from jet fragmentation
- Correlations arising from elliptic flow (v_2)

• Two component model:

Di-hadron correlations are composed of

- Correlations arising from jet fragmentation
- Correlations arising from elliptic flow (v_2)

Assume jets are not correlated with background

• Two component model:

Di-hadron correlations are composed of

- Correlations arising from jet fragmentation
- Correlations arising from elliptic flow (v_2)

Assume jets are not correlated with background

The background is then B(1+2 $v_2^{\text{trig}} v_2^{\text{assoc}} \cos(2\Delta\Phi))$ Phys.Rev. C69 (2004) 021901

• Two component model:

Di-hadron correlations are composed of

- Correlations arising from jet fragmentation
- Correlations arising from elliptic flow (v_2)

Assume jets are not correlated with background

The background is then B(1+2 $v_2^{\text{trig}} v_2^{\text{assoc}} \cos(2\Delta\Phi))$ Phys.Rev. C69 (2004) 021901

- Zero-Yield-At-Minimum (ZYAM)
 - Assumes there is a region where there is no signal
 - Fix B in this region assuming two component model
 - Use v₂ from independent measurements

No collision system dependence

Yield increases with $p_{\rm T}^{\ trigger}$

- No collision system dependence
- PYTHIA 6.4.10 Tune A– Monte Carlo p+p event generator tuned to data and incorporating many features of pQCD

Phys. Rev. Lett. 104, 062301 (2010)

No system dependence at given N_{part}

No system dependence at given N_{part}

Ridge/jet-like yield independent of energy*

*Comparing these two energies in this kinematic region

Identified trigger: Near-side Yield vs N_{part}

3.0 GeV/c < p_T^{trigger} 6.0 GeV/c; 1.5 GeV/c < $p_T^{\text{associated}}$ < p_T^{trigger}

Identified trigger: Near-side Yield vs N_{part}

3.0 GeV/c < p_T^{trigger} 6.0 GeV/c; 1.5 GeV/c < $p_T^{\text{associated}}$ < p_T^{trigger}

Cu+Cu $\sqrt{s_{NN}}$ =200 GeV from SQM2007 Data points at same N_{part} offset for visibility

Identified trigger: Near-side Yield vs N part

3.0 GeV/c < $p_{\tau}^{\text{trigger}}$ 6.0 GeV/c; 1.5 GeV/c < $p_{\tau}^{\text{associated}}$ < $p_{\tau}^{\text{trigger}}$

Baryon/meson ratios

- Clear evidence of different behavior for baryons and mesons
- For this kinematic region, baryon/meson ratio in bulk changing rapidly

Jet-like correlation composition

- Baryon/meson ratios in jet-like correlation in Cu+Cu and Au+Au similar to p+p for both strange and non-strange particles
- Baryon/meson ratios in ridge similar to bulk for both strange and nonstrange particles

Jet-like correlation is like p+p, ridge is like bulk

Spectra of particles associated with ridge similar to inclusive Spectra of particles associated with jet-like correlation harder

The soft ridge

- Untriggered di-hadron correlations no $p_{_{\rm T}}$ cuts
- Similar structure on the near-side "Soft Ridge"
- Are soft and hard ridge the same?

- Soft ridge \rightarrow hard ridge with increasing p_{T}
- Most likely two structures are the same

*Note the different normalizations for the hard and soft ridge

JFS + broad

per trigger)

 $\langle N_{ch} \rangle$

3

300

Ν part

Conclusions

- Lots of data
 - Jet-like correlation dominated by fragmentation
 - Ridge is bulk-like. From the bulk?
 - Hard and soft ridge most likely the same phenomenon

Conclusions

- Lots of data
 - Jet-like correlation dominated by fragmentation
 - Ridge is bulk-like. From the bulk?
 - Hard and soft ridge most likely the same phenomenon
- Theories
 - Causal: Have some difficulty reproducing the data
 - Non-causal/Hydrodynamical models: Good candidates

Outlook

- My prediction: There will be a ridge at the LHC
 - Hydro is mass dependent → need better mass dependent measurements
- •Need to understand the ridge to understand fully reconstructed jets
 - Is it background? Is it signal?
 - If the ridge isn't from jets, can we use it to learn something else?

