Contour Var: elab

Christine Nattrass University of Tennessee at Knoxville

Calculations done on the Titan supercomputer by the CJet collaboration https://sites.google.com/site/cjetsite/

Phase diagram of nuclear matter

Quark Gluon Plasma – a *liquid* of quarks and gluons created at temperatures above ~170 MeV $(2 \cdot 10^{12} \text{K})$ – over a million times hotter than the core of the sun

How to make a Quark Gluon Plasma

The phase transition in the laboratory

Relativistic Heavy Ion Collider

Large Hadron Collider

p+p collisions

3D image of each collision

Pb+Pb collisions

Measurements of transverse energy

$$E_T = \sum_{i=0}^{i=N_{clusters}} E_i \sin(\theta)$$

- Fluid of quarks and gluons
- Energy density (Bjorken)

$$\varepsilon = \frac{1}{\pi R^2 \tau} \frac{dE_t}{dy} \qquad R = 1.12 \, A^{1/3} fm$$

Where is energy distributed in an event?

→43% neutral – not 1/3!
→...but 1/3 of what hits the detector is neutral

Calculations from spectra

The distribution of energy is surprisingly centrality independent.

Where is the energy?

Scale: diameter in inches = $\sqrt{\text{fraction } * 5}$

Where is the energy?

43% neutral Not 33%

Scale: diameter in inches = $\sqrt{\text{fraction } * 5}$

How does it hit your detector?

35% neutral

11% in neutral hadrons

Scale: diameter in inches = $\sqrt{\text{fraction } * 5}$

How does it hit your detector?

Scale: diameter in inches = $\sqrt{\text{fraction } * 5}$

Scale: diameter in inches = $\sqrt{\text{fraction } * 5}$

How does it hit your detector? *Electromagnetic calorimeters*

Deposit 100% of energy 35% of energy in event

Scale: diameter in inches = $\sqrt{\text{fraction } * 5}$

How can we measure $\langle E_{T} \rangle$ in Pb-Pb collisions?

Tracking detectors are really good!

Methods for measuring E_{τ}

- CMS: Tracking + electromagnetic calorimeter
 + hadronic calorimeter
- PHENIX: Electromagnetic calorimeter
- STAR: Tracking + Electromagnetic calorimeter
- ALICE: Tracking*

*Other methods tried – focusing on this one here

24% as a γ Measure in electromagnetic calorimeter

11% as a neutral hadron

Measure in hadronic calorimeter

Scale: diameter in inches = $\sqrt{\text{fraction } * 5}$

58% in primary hadrons

7% in secondary hadrons

Measure in tracking detectors and hadronic calorimeter

PHENIX Uses electromagnetic calorimeter

Deposit 100% of energy 35% of energy in event

→ Measure ~57% of energy

Scale: diameter in inches = $\sqrt{\text{fraction } * 5}$

24% as a γ

Measure ~56%

11% as a neutral hadron Don't measure

58% in primary hadrons Measure in tracking detector

7% in secondary hadrons Cut out using tight DCA cut

Scale: diameter in inches = $\sqrt{\text{fraction } * 5}$

ALICE

Measuring energy with tracking detectors

- f_{total} is robust
- Other corrections are either small or known well

What can we learn from measuring E_{T} ?

→E_T higher than expected at LHC
→Similar trends to those seen at RHIC
→At LHC increasing energy → increasing energy/particle, not more particles
→Reach energy densities around 10 GeV/fm³
→ET seems to scale with N_{quark}

Comparison of different methods

Energy dependence

→ Higher than extrapolations of RHIC data

Average energy/particle

→ Same centrality dependence as at RHIC
→ At RHIC: more energy → more particles

At LHC: more energy \rightarrow higher energy/particle

Scaling

part

→ Same centrality dependence as at RHIC → E_T appears to scale better with N_{quark} than N_T

Energy density

Conclusions

- Energy distribution in an event:
 - NOT 1/3 neutral!
 ...but hits your detector as ~1/3 neutral
- Measurements of E_τ: tracking only measurements highly accurate!
- $E_{\scriptscriptstyle T}$ higher than expected at LHC

The End

Comparison of colliders

RHIC and LHC:Cover 2 –3 decades of energy ($\sqrt{s_{_{NN}}}$ = 9 GeV –5.5 TeV)To discover the properties of hot nuclear matter at T ~ 150 –600 MeV

Hybrid method

Calculation from spectra

- Use spectra data and use Blast wave fits to extrapolate to higher and lower $p_{\scriptscriptstyle T}$
- Three assumptions

• Then, neglecting pseudorapidity dependence and assuming that the correction is the same for 900 GeV, 2.76 TeV, and 7 TeV:

$$E_{T} = E_{T}^{p, \bar{p}} + E_{T}^{n, \bar{n}} + E_{T}^{K} + E_{T}^{\pi} + E_{T}^{\Lambda, \bar{\Lambda}} + E_{T}^{\eta}$$

Everything else is negligible

What does the EMCal measure?

Note that this gets the fraction from kaons wrong. The fraction from kaons is actually about 10% of what we measure. Signal is actually ~30%.

Kaon deposits

- There are several kaon decays into pi0's and pi0's decay mostly into photons
- These will (mostly) not be matched to tracks
- Simulations are unreliable because of how far off simulations are for strange particles

 $K_{S}^{0} \rightarrow \pi^{0} \pi^{0}$ (30.7% B.R.) $K^{\pm} \to \pi^{\pm} \pi^0 \ (20.7\% \text{ B.R.})$ $K^{\pm} \rightarrow \pi^0 e^{\pm} \nu_e \ (5.1\% \text{ B.R.})$ $K^{\pm} \rightarrow \pi^0 \mu^{\pm} \nu_{\mu} (3.4\% \text{ B.R.})$ $K^{\pm} \to \pi^{\pm} \pi^0 \pi^0 \ (1.8\% \text{ B.R.})$ $K_L^0 \to \pi^0 \pi^0 \pi^0 (19.5\% \text{ B.R.})$ $K_L^0 \to \pi^+ \pi^- \pi^0$ (12.5% B.R.).

Kaons – measured vs simulation

$$\mathbf{E}_{T}^{had} = \frac{1}{f_{acc}} \frac{1}{f_{p_{T}cut}} \frac{1}{f_{neutral}} \sum_{i=0}^{n} f_{bg}^{i}(p_{T}) \frac{1}{f_{notID}} \frac{1}{eff(p_{T}^{i})} E_{i}^{had} \sin(\theta^{i})$$

$$\frac{1}{f_{acc}} \quad \text{Correction for the geometric acceptance - 1, with acceptance due to sector boundaries, etc. rolled into the track efficiency
$$\frac{1}{f_{p_{r}cut}} \quad \text{Correction for the low } p_{\tau} \text{ cut off in the acceptance}$$

$$\frac{1}{f_{neutral}} \quad \text{Correction for neutral hadrons included in the definition but not measured well:} \\ \frac{1}{f_{neutral}} \quad \text{Correction for neutral hadrons included in the definition but not measured well:} \\ \frac{1}{f_{neutral}} \quad \text{Correction for background not included in definition (e^{+}) or not measured easily event-by-event (K_{s}^{0}, \Lambda, \overline{\Lambda})} \\ \frac{1}{f_{noutD}} \quad \text{Correction for tracking efficiency} \\ eff(p_{T}^{i}) \text{Correction for tracking efficiency} \\ \frac{\sqrt{p^{2}+m^{2}}-m(nucleons)}{\sqrt{p^{2}+m^{2}}+m(anti-nucleons)} \quad \text{Definition of energy to mimic the behavior of a calorimeter} \\ \frac{\sqrt{p^{2}+m^{2}}(all others)}{\sqrt{p^{2}+m^{2}}(all others)} \quad \text{Christine Nattrass, UTK Particle physics seminar, Oct. 7, 2015} \end{cases}$$$$