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Calculations done on the Titan supercomputer by the CJet collaboration https://sites.google.com/site/cjetsite/
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Phase diagram of nuclear matter

Quark Gluon Plasma

Core of neutron stars?

Quark Gluon Plasma – a liquid of quarks and gluons created at 
temperatures above ~170 MeV (2·1012K) – over a million times hotter than 
the core of the sun



  

Christine Nattrass, UTK Particle physics seminar, Oct. 7, 2015 3

How to make a Quark Gluon Plasma



  

Christine Nattrass, UTK Particle physics seminar, Oct. 7, 2015 4

The phase transition in the 
laboratory
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STARSTAR
PHENIXPHENIX

PHOBOSPHOBOS
BRAHMSBRAHMS

Relativistic Heavy Ion Collider

ALICEALICE

CMSCMS

ATLASATLAS
LHCfLHCf

LHCbLHCb

Large Hadron Collider

Upton, NY
1.2km diameter
p+p, d+Au, Cu+Cu, Au+Au, U+U
√s

NN
 = 9 - 200 GeV

Geneva, Switzerland
8.6km diameter
p+p, p+Pb, Pb+Pb
√s

NN
 = 2.76 GeV, 5.5 TeV

RHIC

Quark Gluon Plasma

Core of neutron stars?

RHIC

LHCLHC
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STARSTAR PHENIXPHENIX

ALICEALICE

CMSCMS

ATLASATLAS
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p+p collisions

3D image of each collision
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Pb+Pb collisions

5
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Measurements of transverse energy

● Fluid of quarks and gluons

● Energy density (Bjorken)

ET=∑i=0

i=N clusters

Ei sin (θ)
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Where is energy distributed in an event?

➔43% neutral – not 1/3!
➔...but 1/3 of what hits the detector is neutral
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Calculations from spectra

The distribution of energy is surprisingly centrality independent.
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Where is the energy?
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Where is the energy?
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How does it hit your detector?

π0

Scale:  diameter in inches = √fraction * 5
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How does it hit your detector?

Scale:  diameter in inches = √fraction * 5
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How does it hit your detector?

Scale:  diameter in inches = √fraction * 5
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How does it hit your detector?
Tracking detectors

Scale:  diameter in inches = √fraction * 5
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How does it hit your detector?
Electromagnetic calorimeters

Scale:  diameter in inches = √fraction * 5
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How can we measure <E
T
> in Pb-Pb collisions?

➔Tracking detectors are really good!
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Methods for measuring E
T

● CMS:  Tracking + electromagnetic calorimeter 
+ hadronic calorimeter

● PHENIX:  Electromagnetic calorimeter
● STAR:  Tracking + Electromagnetic 

calorimeter
● ALICE:  Tracking*

*Other methods tried – focusing on this one here
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CMS

Scale:  diameter in inches = √fraction * 5
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CMS

Phys. Rev. Lett. 109, 252301 (2012)

<p
T
> ~ 700 MeV/c

Phys. Lett. B 727 (2013) 371-380

Tracks:  p
T
>900 MeV/c

Clusters: limited by B
→ ~62% of energy measured
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PHENIX

Scale:  diameter in inches = √fraction * 5
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STAR

Scale:  diameter in inches = √fraction * 5
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ALICE

Scale:  diameter in inches = √fraction * 5
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Cut out using tight DCA cut
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ALICE

ET=
1

f pT cut

1
f total

∑
i=0

n

f bg
i ( pT )

1
f notID

1

eff ( pT
i
)

E i sin (θi)

2% 3% 40%3% But known well!

45%
What we 
measure 
directly

Corrections
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ALICE:  f
total

π0
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Measuring energy with tracking 
detectors

● ftotal is robust

● Other corrections are either small or known 
well
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What can we learn from measuring E
T
?

➔E
T
 higher than expected at LHC

➔Similar trends to those seen at RHIC
➔At LHC increasing energy → increasing 
energy/particle, not more particles

➔Reach energy densities around 10 GeV/fm3

➔ET seems to scale with N
quark
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Comparison of different methods

ALICE
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Energy dependence

➔ Higher than extrapolations of RHIC data
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Average energy/particle

➔ Same centrality dependence as at RHIC
➔ At RHIC: more energy → more particles

At LHC: more energy → higher energy/particle
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Scaling

➔ Same centrality dependence as at RHIC
➔ E

T
 appears to scale better with N

quark
 than N

part
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Energy density

Standard estimate τ
0
 ≈ 1 fm/c

ϵ=
1

A c τ0

dET

dy

QGP 
formation

RHIC



Christine Nattrass, UTK Particle physics seminar, Oct. 7, 2015 35

Conclusions
● Energy distribution in an event:

– NOT 1/3 neutral!
...but hits your detector as ~1/3 neutral

● Measurements of ET:  tracking only 
measurements highly accurate!

● ET higher than expected at LHC
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The End
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Comparison of colliders

RHIC LHC
√s

NN
 (GeV) 9-200 2760, 5500 center of mass energy

dN
ch

/dη ~1200 ~1600 number of particles

T/T
c

1.9 3.0-4.2 temperature

ε (GeV/fm3) 5 ~15 energy density

τ
QGP

 (fm/c) 2-4 >10 lifetime of QGP

RHIC and LHC:
Cover 2 –3 decades of energy (√s

NN
= 9 GeV –5.5 TeV)

To discover the properties of hot nuclear matter at T ~ 150 –600 MeV
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Hybrid method

E
t

had

π∓,k∓,pp

A. Well-
measured 

by TPC

B. Not well 
measured but 

included in def.

n,K0

L
,n

C. Not 
included in 

def. but 
occurs as a 
background

e∓ K0

S
,  ΛΛ

D.  Included in 
def, but will 
exclude with 

DCA and correct 
for missing 

energy

E
t

em

π0,e∓, γ, η

E.  Well-
measured 
by EMCal

Not included in 
def. but occurs 

as a 
background

n,K0L,`n
π∓,k∓,pp

Not included in 
def. but occurs 

as a 
background

n,K0L,`n
π∓,k∓,pp

F.  Not 
included in def. 
but occurs as a 

background

π∓,k∓,pp
n,K0

L
,n

Stuff the tracking detectors measure well Stuff the EMCal measures well
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Calculation from spectra
● Use spectra data and use Blast wave fits to extrapolate to higher 

and lower pT

● Three assumptions
                         ET

n=ET
p

                         ET
n=ET

p

                             K0
L=K0

S

● Then, neglecting pseudorapidity dependence and assuming that 
the correction is the same for 900 GeV, 2.76 TeV, and 7 TeV:

ET=ET
p , p̄

+ET
n , n̄

+ET
K
+ET

π
+ET

Λ , Λ̄
+ET

η

Everything else is negligible
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What does the EMCal measure?

Note that this gets the fraction from kaons wrong.  
The fraction from kaons is actually about 10% of 
what we measure.  Signal is actually ~30%.
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Kaon deposits

● There are several kaon decays 
into pi0's and pi0's decay 
mostly into photons

● These will (mostly) not be 
matched to tracks

● Simulations are unreliable 
because of how far off 
simulations are for strange 
particles
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Kaons – measured vs simulation
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E
T

em

ET
em=

1
f acc

1
f ET min

(∑i
δmatched

1
εγ f nonlin

E i sin (θi)−ET
kaons−ET

ch.−ET
(anti )neutrons−ET

secondary)

εγ

1
f acc

Geometric acceptance, not including dead channels

efficiency x acceptance within geometric acceptance of detector ~1%

ET
(anti)neutrons

Correction for (anti)neutron deposits in calorimeter ~1.5-5%

ET
secondary

Correction for deposits by particles from secondary interactions <4 <5%

Sum over 
clusters

1
f ET min

Correction for minimum energy threshold  ~6%

1
f nonlin

Correction for nonlinearity of detector response ~0.5%

ET
kaons

All energy deposited by K0

S
, K0

L
, K±, including decays like  K0

S
→π0π0→γγγγ <3%

ET
ch

Correction for other charged hadron deposits in calorimeter ~10-20%

D
at

a 
d

ri
ve

n
In

p
u

t 
fr

o
m

 d
a

ta

Contributions 
to final E

T

em 

systematic 
error
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E
T

had

ET
had

=
1

f acc

1
f pT cut

1
f neutral

∑
i=0

n

f bg
i

 pT 
1

f notID

1

eff  pT
i


E i
had sin 

i


1
f acc

1
f pT cut

1
f neutral

f bg
i  pT 

1
f notID

eff  pT
i 

E had
=

 p2m2−m nucleons

 p2m2manti−nucleons

 p2m2all others

Correction for the geometric acceptance – 1, with acceptance due to sector boundaries, etc. rolled into the 
track efficiency

Correction for the low p
T
 cut off in the acceptance

Correction for neutral hadrons included in the definition but not measured well:
K0

S
, Λ,Λ, K0

L
, n,n

Not trying to measure K0

S
, Λ,Λ in TPC – apply DCA cut to eliminate, correct for missing energy

Correction for background not included in definition (e∓) or not measured easily event-by-event (K0

S
, Λ,Λ)

Correction for π, K, p not identified

Correction for tracking efficiency

Definition of energy to mimic the behavior of a calorimeter


	Slide 1
	Phase diagram of nuclear matter
	QGP recipe
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Intro (5)
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	fneutral
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	ET had corrections

