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Calculations done on the Titan supercomputer by the CJet collaboration https://sites.gooqle.com/site/cjetsite/



Phase diagram of nuclear matter
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Quark Gluon Plasma — a liquid of quarks and gluons created at

temperatures above ~170 MeV (2:10"°K) — over a million times hotter than
the core of the sun
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How to make a Quark Gluon Plasma
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The phase transition in the
laboratory

3
|

TR

Phase Transition/ Chemical Freeze-Out Thermal Freeze-Out
Cross-Over (inel. collisions cease) (el. collisions cease)

Collision

Christine Nattrass, UTK Particle physics seminar, Oct. 7, 2015 4



Relativistic Heavy lon Collider Large Hadron Collider

Upton, NY

Geneva, Switzerland
1.2km diameter
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p+p collisions

3D image of each collision

Christine Nattrass, UTK Particle physics seminar, Oct. 7, 2015



Pb+Pb collisions

\/! / Pb+Pb @ sqrt(s) = 2.76 ATeV
/%
N— % / 1 2010-11-08 11:29:42
—Z I\ | A
AN s Fill : 1482
/ I | Run : 137124
7 Event : 0x00000000271EC693
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Measurements of transverse energy
E. Zl_ E sm

e Fluid of quarks and gluons
* Energy density (Bjorken)

1 dE,

_ _ 1/3
Rl R =112 A3fm
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Where is energy distributed in an event?

>43% neutral — not 1/3!
>...but 1/3 of what hits the detector 1s neutral

Christine Nattrass, UTK Particle physics seminar, Oct. 7, 2015 10



Calculations from spectra
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The distribution of energy is surprisingly centrality independent.
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Where is the energy?
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‘Scale: diameter in inches = Vfraction * 5
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Where is the energy?

43% neutral
Not 33%

57% charged
Not 67%

‘Scale: diameter in inches = Vfraction * 5
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How does it hit your detector?

~31%

~64Y
~649% "
~36% n —VP%

‘Scale: diameter in inches = Vfraction * 5

~694
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How does it hit your detector?

Y Y @

f l'

L @% ‘9‘@ Q’
35% neutral

11% in neutral hadrons 65% charged

secondaries

‘Scale: diameter in inches = Vfraction * 5
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How does it hit your detector?

/JF(
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24% as ay
nA @A 8% in primary hadrons

11% as a
neutral hadron 7% in secondary hadrons

‘Scale: diameter in inches = Vfraction * 5
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How does it hit your detector?
Tracking detectors

y,

njf% TLJT | Gﬁ
@ @ 7% Secondaries

35% No signal

58% Primaries

‘Scale: diameter in inches = Vfraction * 5
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How does it hit your detector?
Electromagnetic calorimeters

Y’D AY/

Deposit 100% of energy ‘ ‘
35% of energy in event G’

Deposit about 1/3 of energy

AL

0 °
‘Scale: diameter in inches = Vfraction * 5 65% of cnergy 1n event
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How can we measure <ET> in Pb-Pb collisions?

>Tracking detectors are really good!

Christine Nattrass, UTK Particle physics seminar, Oct. 7, 2015 19



Methods for measuring E_

« CMS: Tracking + electromagnetic calorimeter
+ hadronic calorimeter

« PHENIX: Electromagnetic calorimeter

« STAR: Tracking + Electromagnetic
calorimeter

 ALICE: Tracking®

*Other methods tried — focusing on this one here

Christine Nattrass, UTK Particle physics seminar, Oct. 7, 2015 20
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24% as ay

Measure in electromagnetic
calorimeter

nAmA ‘ 58% in primary hadrons

11% as a
neutral hadron

Measure in hadronic calorimeter Measure in tracking detectors
and hadronic calorimeter

7% in secondary hadrons

‘Scale: diameter in inches = Vfraction * 5
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Tracks: p_>900 MeV/c
Clusters: limited by B

— ~62% of energy measured

O
<
n
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<p >~700MeV/c
T

Phys. Lett. B 727 (2013) 371-380
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PHENIX

Uses electromagnetic calorimeter

@Q‘@

Deposit about 1/3 of energy

Deposit 100% of energy

35% of energy in event

— Measure ~57% of energy

0 °
‘Scale: diameter in inches = Vfraction * 5 65% of cnergy 1n event
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Measure in / ‘
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calorimeter Backgrounds

d, & / 58% in primary hadrons

n ff

L Measure in tracking detector
@ @ / Background

1% as oo

neutral hadron
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‘Scale: diameter in inches = \fraction * 5
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° . .

@ @‘ Measure 58% in primary hadrons

~56% Measure in tracking detector

7% in secondary hadrons
Cut out using tight DCA cut

24% as ay

11% as a

neutral hadron
Don't measure

‘Scale: diameter in inches = Vfraction * 5
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ALICE
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Corrections
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E sin(0')

f

What we
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directly
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ALICE: f =0.567+0.009

total

‘Scale: diameter in inches = Vfraction * 5 @
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Measuring energy with tracking
detectors

o .. IS robust

 Other corrections are either small or known
well

Christine Nattrass, UTK Particle physics seminar, Oct. 7, 2015
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What can we learn from measuring E_?

>E_higher than expected at LHC

>Similar trends to those seen at RHIC

>At LHC increasing energy — increasing
energy/particle, not more particles

>Reach energy densities around 10 GeV/fm’

>ET seems to scale with N

quark

Christine Nattrass, UTK Particle physics seminar, Oct. 7, 2015 29



Comparison of different methods
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Energy dependence
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> Higher than extrapolations of RHIC data
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Average energy/particle
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> Same centrality dependence as at RHIC
> At RHIC: more energy — more particles
At LHC: more energy — higher energy/particle
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Scaling

12
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> Same centrality dependence as at RHIC
> E_appears to scale better with N than Npart

quark
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Energy density
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Conclusions

* Energy distribution in an event:

- NOT 1/3 neutral!
...but hits your detector as ~1/3 neutral

@
..

- Measurements of E-: tracking only “ ~@?
measurements highly accurate! @“ug o
- - - @

« E- higher than expected at LHC

Christine Nattrass, UTK Particle physics seminar, Oct. 7, 2015 33



The End

Christine Nattrass, UTK Particle physics seminar, Oct. 7, 2015
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Comparison of colliders

RHIC LHC
Vs (GeV) 9-200 2760, 5500
dN_/dn ~1200 ~1600
T/T 1.9 3.0-4.2
& (GeV/fm*)|5 ~15
T (fm/c) 2-4 >10
QGP
RHIC and LHC:

center of mass energy
number of particles
temperature

energy density
lifetime of OGP

Cover 2 —3 decades of energy (V S~ 0 GeV =5.5 TeV)
To discover the properties of hot nuclear matter at T ~ 150 —-600 MeV

Christine Nattrass, UTK Particle physics seminar, Oct. 7, 2015
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Hybrid method

had em

O\ AN
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t / \\\ \\\
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~ byTPC | KT by EMCal |
+ /
\\k’pp \L/ \ne’yy
| K
D. Included in —
“ © def, butwill
exclude with \\
DCAand correct
‘ for missing )/ \ )
N o Ener y — )
\ S’ / \\\ ///
Stuff the tracking detectors measure well Stuff the EMCal measures well
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Calculation from spectra

» Use spectra data and use Blast wave fits to extrapolate to higher
and lower p;

 Three assumptions
ETn=ETp
ET ﬁ=ET P
K0L=KOS
* Then, neglecting pseudorapidity dependence and assuming that
the correction is the same for 900 GeV, 2.76 TeV, and 7 TeV:

__ p.D n,n K T A, A n
E. =E."+E."+E +E +FE " "+F,

Everything else is negligible

Christine Nattrass, UTK Particle physics seminar, Oct. 7, 2015 39



What does the EMCal measure?

0.6

fraction

0.5

0 4 e oo @ _._._+—'—"—++—'—'—++_+‘+‘++

:_ -# Signal
D '3 - » Hadran
Secondary
- Kaon

02_ Meutron

=¥—

T v v -
e e ¥ ¥y '_—"——T——T——T—
0 1_—
=<?—O——([>——O——?—O—([>—_O“‘?_O_’O_O_C|)_ _?_ : -D——O—
0 161214 76 18
Centrality bin

Note that this gets the fraction from kaons wrong.
The fraction from kaons is actually about 10% of
what we measure. Signal is actually ~30%.
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Kaon deposits

* There are several kaon decays ;o ., 0.0 (307% B.R.)
into pi0's and pi0's decay k0 (o077 B R
mostly into photons I

: K= = 7'e* v, (5.1% B.R.)
« These will (mostly) not be 1‘ |

matched to tracks K* — a%y*u, (34% B.R.)
 Simulations are unreliable K* — n*z%7" (1.8% B.R.)
because of how far off KO — 707020 (19.5% B.R.)

simulations are for strange
particles

Christine Nattrass, UTK Particle physics seminar, Oct. 7, 2015

K - nta—n% (12.5% B.R.).

41



Kaons — measured vs simulation

pp, INEL,\s= 0.9 TeV
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Sum over E em
— clusters T

em 1 1 1 . kaons ch. (anti ) neutrons secondar
L= (Ziématched E;sin(0,)—E7"—E7" —E; — E7"7)
facc fETmin gy fnonlin
L
f Geometric acceptance, not including dead channels ] ]
ace Contributions
e . " 0 to final E_°"
o Correction for minimum energy threshold ~6% T
- Eymin systematic
Q 1 error
> : . : 0
- f _ Correction for nonlinearity of detector response ~0.5%
S nonlin
©
Y= E ];aons All energy deposited by K° o KOL, K*, including decays like KOS—>'IT0'ITO—>VYVV <3%
Q h
C
- ET Correction for other charged hadron deposits in calorimeter ~10-20%
g E( anti) neutrons
= ! Correction for (anti)neutron deposits in calorimeter ~1.5-5%
o
d
"E E STecon my'Correction for deposits by particles from secondary interactions <4 <5%
>
2 g, . - . 0
= efficiency x acceptance within geometric acceptance of detector ~1%
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E had

. 1 1 1 1 | had - [ i
EN = Z 7 (ps) — E " sin(0')
! facc prcut fneutml =0 bg anﬂD eﬁ(]?l]")

|
— Correction for the geometric acceptance — 1, with acceptance due to sector boundaries, etc. rolled into the
f acce track efficiency

# Correction for the low p_ cut off in the acceptance
prcut
1 Correction for neutral hadrons included in the definition but not measured well:

K., A, A K, N, n
fneutml Not trying to measure KOS, A, A in TPC — apply DCA cut to eliminate, correct for missing energy

f;g (pT) Correction for background not included in definition (e™) or not measured easily event-by-event (KOS, A, A)
1
fnot[D

eﬁ ( plT) Correction for tracking efficiency

\/ p>+m’—m(nucleons)

had _
E = P -I— m —I- m(antl — nucleons) Definition of energy to mimic the behavior of a calorimeter

.2 2/ L)
V U TIIL \(/LLL agLricr ) )

Correction for «, K, p not identified
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