The little bang: probing the quark gluon plasma

Christine Nattrass University of Tennessee at Knoxville

Phase diagram of nuclear matter

Quark Gluon Plasma – a *liquid* of quarks and gluons created at temperatures above ~170 MeV $(2 \cdot 10^{12} \text{K})$ – over a million times hotter than the core of the sun

Exploring QCD at high temperatures

How to make a Quark Gluon Plasma

The phase transition in the laboratory

Relativistic Heavy Ion Collider

Large Hadron Collider

Comparison of colliders

	RHIC	LHC	
$\sqrt{\mathrm{s_{_{NN}}}(\mathrm{GeV})}$	9-200	2760, 5500	center of mass energy
$dN_{ch}/d\eta$	~1200	~1600, ??	number of particles
T/T _c	1.9	3.0-4.2	temperature
ε (GeV/fm ³)	5	~15	energy density
$ au_{ m QGP}(m fm/c)$	2-4	>10	lifetime of QGP

RHIC and LHC:Cover 2 –3 decades of energy ($\sqrt{s_{_{NN}}}$ = 9 GeV –5.5 TeV)To discover the properties of hot nuclear matter at T ~ 150 –600 MeV

p+p collisions

3D image of each collision

Pb+Pb collisions

How do we study a QGP?

Tool	Analogous to:
Hard probes – jets, heavy flavor (charm & beauty), direct photons	Spectroscopy – probe travels through the medium, changes indicate interaction with the medium
Hydrodynamical flow	Measurements of viscosity
Particle ratios	Measuring chemical composition in a solution
Thermal photons, charmonium	Thermometer

If we have a fluid...

- Initial overlap asymmetric \rightarrow pressure gradients
- Momentum anisotropy → Fourier decomposition:

 $\frac{d^2 N}{dp_T d\phi} \approx 1 + 2 v_1 \cos(d\phi) + 2 v_2 \cos(2d\phi) + 2 v_3 \cos(3d\phi) + 2 v_4 \cos(4d\phi) + 2 v_5 \cos(5d\phi) + \dots$

What does it mean?

Same phenomena observed in gases of strongly interacting atoms

Time

Initial state anisotropies converted to final state anisotropies Fourier decomposition:

Does this describe the data?

Yes!

More data

We have a liquid of quarks and gluons!

What does this mean?

• Same phenomena observed in gases of strongly interacting atoms

K, O'Hara, S. Hemmer, M. Gehm, S. Granade, J. Thomas Science 298 2179 (2002)

What does this mean?

• Same phenomena observed in gases of strongly interacting atoms

K, O'Hara, S. Hemmer, M. Gehm, S. Granade, J. Thomas Science 298 2179 (2002)

The Quark Gluon Plasma has a very low viscosity

But what does this mean?

- Hydrodynamics works \rightarrow
 - (local) thermalization
 - image of the initial state
- Really low viscosity
 - Near AdS/CFT bound
 - $\eta/S \sim 1/4\pi$

The QGP is the perfect liquid!

(not the gas of "free" quarks and gluons we expected)

Probing the Quark Gluon Plasma

Want a probe which traveled through the collision QGP is very short-lived (~1-10 fm/c) \rightarrow cannot use an external probe

Probes of the Quark Gluon Plasma

Want a probe which traveled through the medium QGP is short lived \rightarrow need a probe created in the collision

Probes of the Quark Gluon Plasma

Want a probe which traveled through the medium QGP is short lived \rightarrow need a probe created in the collision We expect the medium to be dense \rightarrow absorb/modify probe

Hard probes

- Hard probes energies involved (Q²) are large, high confidence in theory calculations (perturbative quantum chromodynamics)
 - Jets quarks and gluons from a hard parton scattering, most commonly occurring as di-jets
 - Heavy quarks charm and beauty quarks
 - Direct photons photons created in the collision, not expected to interact with the medium → control

Jets – hard parton scattering leads to back-to-back quarks or gluons, which then fragment as a columnated spray of particles

Jets – azimuthal correlations

Select high momentum particles \rightarrow biased towards jets

But at lower momenta...

Near-side shows modification

Excess yield in Au+Au relative to p+p

Looking in two dimensions

In two dimensions in Au+Au

The jet-like correlation

- Appears to be dominantly produced by vacuum fragmentation
 - No difference between collision systems
 - Consistent with QCD-inspired Monte Carlo (PYTHIA)

Ridgeology (2006-2011)

- Hundreds of papers on the ridge, over 10 distinct production mechanisms proposed
 - Gluon brehmsstrahlung
 - QCD color fields
- Measured just about everything possible
 - Size, particle composition, collision species dependence, collision energy dependence, size relative to the reaction plane, momentum dependence

Measurements I worked on

Background subtraction

• Two component model:

Di-hadron correlations are composed of

- Correlations arising from jet fragmentation
- Correlations arising from elliptic flow (v_2)

Assume jets are not correlated with background

- The background is then B(1+2 $v_2^{\text{trig}} v_2^{\text{assoc}} \cos(2\Delta\Phi))$ Phys.Rev. C69 (2004) 021901
- Zero-Yield-At-Minimum (ZYAM)
 - Assumes there is a region where there is no signal
 - Fix B in this region assuming two component model
 - Use v₂ from independent measurements

What does it mean?

Same phenomena observed in gases of strongly interacting atoms

Time

Initial state anisotropies converted to final state anisotropies Fourier decomposition:

This is not what a nucleus looks like

This is what a nucleus looks like

This is not what our collision looks like

Phys.Rev.C81:054905,2010

This is what our collision looks like

What does it mean?

Same phenomena observed in gases of strongly interacting atoms

Time

Initial state anisotropies converted to final state anisotropies Fourier decomposition:

Background subtraction

• Two component model:

Di-hadron correlations are composed of

- Correlations arising from jet fragmentation
- Correlations arising from elliptic flow (v_2)

Assume jets are not correlated with background

The background is then $B(1+2 v_{2}^{\text{trig}} v_{2}^{\text{assoc}} \cos(2\Delta\Phi))$ Phys.Rev. C69 (2004) 021901 +2 $v_{3}^{\text{trig}} v_{3}^{\text{assoc}} \cos(3\Delta\Phi)$)

- Zero-Yield-At-Minimum (ZYAM)
 - Assumes there is a region where there is no signal
 - Fix B in this region assuming two component model
 - Use v₂ from independent measurements

What the ridge is...

...is strong evidence that the Quark Gluon Plasma is a liquid! This is not what we were looking for.

What have we learned from this?

- The Quark Gluon Plasma is a liquid of quarks & gluons, the hottest matter produced in a laboratory, and the lowest viscosity fluid every observed.
- Sometimes you don't find what you're looking for, but you find something else interesting.

So what's this?

Seen by CMS in 7 TeV proton-proton collisions

Jet reconstruction

- Identify all of the particles in the jet \rightarrow parton energy, momentum
- Difficult in heavy ion collisions but possible!

Jets at the LHC

Key experimental results

Jet-like correlation is dominantly produced by fragmentation \rightarrow *Ridge* production must not affect formation of jet-like correlation

In-plane

- Particle ratios in *Ridge* comparable to bulk
- The *Ridge* is smaller in collisions at $\sqrt{s_{NN}} = 62 \text{ GeV than } 200 \text{ GeV}$
- *Ridge* is larger in plane than out of plane
- If there is a mass ordering, *Ridge* increases with increasing trigger mass
- The Ridge is broad in $\Delta \eta$

<N_{nart}>

Centrality dependence of $dN_{ch}/d\eta$

Centrality dependence of $dN_{ch}/d\eta$

$\sqrt{s_{_{NN}}}$ dependence

- $dN_{ch}/d\eta/(0.5*N_{part}) \sim 8$
- 2.1 x RHIC 1.9 x pp (NSD) at 2.36 TeV
- growth with \sqrt{s} faster in AA than pp

- $dE_T/d\eta/(0.5*N_{part}) \sim 9$ in 0-5%
- ~5% increase of N_{part} (353 \rightarrow 383) \rightarrow 2.7 x RHIC (consistent with 20% increase of $\langle p_T \rangle$)

Grows faster than simple logarithmic scaling extrapolated from lower energy

Single particles

Measure spectra of hadrons and compare to those in p+p collisions or peripheral A+A collisions

If high- p_{T} hadrons are suppressed, this is evidence of jet quenching

Assumption: sufficiently high- p_T hadrons mostly come from jets Unmodified spectra:

Nuclear modification factor (R_{AA})

Nuclear modification factor (R_{AA})

Nuclear modification factor (R_{λ}) 1.6 U S ~1116 $R_{CP}\left(\frac{0.5\%}{60-80\%}\right)$ ALICE \s_n = 2.76TeV, |y|<0.75 K₅⁰ K⁺ + K⁻ MeV/c² 1.4 C charged Lambda 1.2 Λ ~494 <u>U~ S</u> MeV/c² 0.8 Kaon 0.6 Preliminary ~140 U/ MeV/c² 0.4 Pion K± 0.2 °0 π^{-} 2 14 16 p_{_} (GeV/c) 10 12 4 6 8 $R_{AA} = \frac{1/N_{evt}^{AA} d^2 N_{ch}^{AA} / d\eta dp_T}{\langle N_{coll} \rangle (1/N_{evt}^{pp}) d^2 N_{ch}^{pp} / d\eta dp_T}$ π^+

Christine Nattrass, University of Tennessee Knoxville, 6 Feb. 2012

~8.6 cm

κ[°]s

Baryon anomaly: Λ/K^0_{S}

