

Outline

Introduction to heavy ion collisions and the Quark Gluon Plasma

Methods for using jets as a probe of the QGP

Single particles Di-hadron correlations Jet reconstruction

Conclusion

Phase diagram of nuclear matter

How to make a Quark Gluon Plasma

The phase transition in the laboratory

Relativistic Heavy Ion Collider

PHENIX

Coverage: $0 < \phi < \pi/2, x2$ $-0.35 < \eta < 0.35$

STAR

Coverage: $0 < \phi < 2\pi$ $-1 < \eta < 1$

Electromagnetic Calorimeter allows triggering

Silicon Vertex Tracker Magnet Coils ←E-M Calorimeter IIIIII Time Projection Time Of Flight ∠Electronics Platforms - Forward Time Projection Chamber

STAR Detector

A simple picture of a heavy ion collision

Jets as a probe of the quark gluon plasma

One jet "absorbed" by the medium

Single particles

Measure spectra of hadrons and compare to those in p+p collisions or peripheral A+A collisions

If high- p_{T} hadrons are suppressed, this is evidence of jet quenching

Assumption: sufficiently high- p_T hadrons mostly come from jets Unmodified spectra:

Experimental results

Christine Nattrass, University of Tennessee at Knoxville, 2 Nov. 2009

Renk – 8 GeV hadron

x [fm]

Comparisons to theory

Jets – azimuthal correlations

At RHIC energies, jets are dominantly produced as di-jets Assume that a high- p_{τ} trigger particle comes from a jet

Look at distribution of high- p_{T} associated particles relative to trigger

Christine Nattrass, University of Tennessee at Knoxville, 2 Nov. 2009

Jets – azimuthal correlations

The away-side jet is quenched

But at lower p_T ...

Near-side, away-side show modification Excess yield in Au+Au relative to p+p

STAR PRL **95** (2005) 152301

Look in two dimensions

d+Au

In two dimensions in Au+Au

The jet-like correlation

Number of particles (Y_{it}) increases with p_T^{tigger}

No collision system dependence

PYTHIA – Monte Carlo p+p event generator tuned to data and incorporating many features of pQCD

Christin Deseribes data two Herenscept at domest por 2009

The Ridge

- Unpredicted
- Properties like the bulk
 - Spectra similar to bulk
 - Particle composition similar to bulk
- Larger in more central collisions
- Several models on the market, but not settled yet

Away-sideShape change on away-sideExcess yield at low p_{T} on away-side

STAR PRL 95 (2005) 152301

Away-side

Structure has a dip Mach cone? Deflected jet?

Jets in Heavy-Ion Collisions

Goal

Reconstruct the full jet→ kinematics of hard scattering in unbiased way, even in presence of (underlying) heavy-ion collision.

Jets at RHIC

Jets clearly visible in p+p Full jet reconstruction: a challenge in A+A We have the tools: Modern jet-finding algorithms Background fluctuation estimates

Conclusions

- Jets are a useful tool for studies of the QGP Single hadron
 - Precise measurement
 - Ambiguous interpretation
- Di-hadron correlations
 - Less precise
 - Less ambiguous
- Jet reconstruction
 - Difficult measurement
 - Most straightforward interpretation

PHOBOS

Coverage:

With tracking: $0 < \phi < 0.2, x2$ $0 < \eta < 1.5$ Without tracking: $0 < \phi < 2\pi$ $-3 < \eta < 3$

Some key features of a heavy ion collision*

- Particles exhibit collective flow elative to the reaction plane, behaving like a fluid of quarks and gluons
- For this measurement, that is a background
- The majority of hadrons produced are ow p_{T} light particles (π ,K,p)
- The production of these particles is lescribed reasonably well by tatistical ("thermal") models
- These low p_T particles are often called the bulk"
 - At local equilibrium?
- <u>A hard parton is a probe of "the</u> Christing Wattrass, University of Tennessee at Knoxville, 2 Nov. 2009

*I am glossing over details and disagreements within the field

Large background relataction...

Signal/Background ≈ 0.05

Depends on kinematic region

Signal/Background higher at higher $p_{_{T}}$

Christine Nattrass, University of Tennessee at Knoxville, 2 Nov. 2009

Jets in p+p collisions

Hard probes \rightarrow early times Calculable in pQCD: factorization theorem

Ridge composition

Baryon/meson ratios in *Jet* in Cu+Cu and Au+Au similar to p+p for both strange and non-strange particles

Au+Au 0-10% STAR preli 470] 3<p. <4 GeV

-260

No collision system dependence at a given N_{pat} Jet-like yield increases with N_{pat} PYTHIA describes data at lower N_{par}

Jet is like p+p, Ridge is like bulk

Spectra of particles associated with *Ridge* similar to inclusive

Spectra of particles associated with Jet harder

Ridge composition

Baryon/meson ratios in *Ridge* similar to bulk for both strange and non-strange particles

Jet/Ridge w.r.t. reaction plane

No system dependence at given N_{pat}

Christine Nattrass, University of Tennessee at Knoxville, 2 Nov National STAR), arXiv:0806.2261/nucl-ex 42

Identified trigger: Near-side Yield vs N_{put}

- Cu+Cu consistent with Au+Au at same N_{pat}
- If systematic errors in Au+Au are not correlated, there is no evidence of mass ordering
- If systematic errors are correlated, Ridge is larger for larger mass
- h are 50% p, 50% π

Conclusions: Ridge

- Extensive data on Ridge
- Cu+Cu, Au+Au consistent at same N_{pat}
- *Ridge/Jet* ratio independent of energy Persists to high p_T^{tiggr}
- Ridge looks like bulk
- $p_{T}^{associated}$ dependence, particle composition
- Jet agreement between different systems, with scaled Pythia
- Simulations can be used to approximate z_T distribution for comparisons of data to models
- More steeply falling jet spectrum in 62 GeV \rightarrow stronger bias towards unmodified/surface jets
- Could explain smaller Ridge yield in 62 GeV