System size dependence of strange particle correlations in Cu+Cu and Au+Au collisions at √s_{NN} = 200 GeV at RHIC

Christine Nattrass (Yale University) STAR Collaboration

SQM 2007, Levoča, Slovakia

Outline

Motivation

Analysis technique

• Results

Conclusions

TAR Christine Nattrass, Yale University

2

Intermediate p_T baryon/meson enhancement

- Large enhancement of baryon/ meson ratio in central collisions relative to p+p
 - in both Au+Au and Cu+Cu
 - reaches maximum at p_T ~ 2-3
 GeV/c
 - not unmodified jet fragmentation
- Baryon/meson splitting of R_c
 - strange and non-strange particles show similar suppression

SQM 2007 Levoča, Slovakia

Motivation – particle identification in jets

• Particle/antiparticle differences

- Quark vs gluon jets
- Meson/baryon differences
 - Coalescence/ recombination mechanisms
 - Consistent with particle ratios

• Testable with identified particle correlations?

TAR Christine Nattrass, Yale University

4

Strange particle identification

• Full azimuthal acceptance

Reconstruction of decay vertices possible
 ~95% purity in Cu+Cu high p_T

2.0 GeV<p_T<2.5 GeV,

Strange particle identification

• Full azimuthal acceptance

• Reconstruction of decay vertices possible • ~95% purity in Cu+Cu high p_{T}

Christine Nattrass, Yale University

Motivation - Long-range pseudorapidity correlations

nucl-ex/0701074

• Long-range pseudorapidity ($\Delta\eta$) correlations observed by STAR in Au+Au at intermediate p_T

Near side jet peak sits on plateau (Ridge)

 Significant contribution to the near-side yield in central Au+Au

 Look for particle and system size dependencies which might reveal information about production mechanism

CAR Christine Nattrass, Yale University

SQM 2007 Levoča, Slovakia

- Ridge previously observed to be flat in $\Delta \eta$
- To determine relative contributions, find yields for near-side, take $\Delta \phi$ projections in
 - $-0.75 < \Delta \eta < 0.75$ Jet + Ridge
 - 0.75<|Δη|<1.75 **Ridge**
 - Jet = (Jet+Ridge) Ridge*.75/1.75
 - Ridge = yield from -1.75< $\Delta\eta$ <1.75 – jet yield
- Flow contributions to jet cancel

• v₂ roughly flat with η *TAR* Christine Nattrass, Yale University

$\Delta \Phi - \Delta \eta$ Correlations Method

SQM 2007 Levoča, Slovakia 8

The Ridge in Cu+Cu

- Is there a Ridge in Cu+Cu?
- $\Delta\eta$ projection flat at large $\Delta\eta$
- Small and large $\Delta \eta$ regions match on away side
- Small yield above background in large $\Delta \eta$ region
- Jet yield in $\Delta\eta$ consistent with Jet in $\Delta\eta$ subtracting (Jet+Ridge)-Ridge

CAR Christine Nattrass, Yale University

9

 $3.0 \text{ GeV} < p_{T}^{trig} < 6.0 \text{ GeV}, 1.5$

h-h, 0-20% -Cu+Cu √s_{NN} = 20

 $GeV < p_{\tau}^{assoc} < p_{\tau}^{trig}$

d²N/dφ/dη

1/N_{trig}

STAR

1.15

0.95

 Δn

Preliminary

1.1 1.05

The Ridge in Cu+Cu

- Is there a Ridge in Cu+Cu?
- $\Delta\eta$ projection flat at large $\Delta\eta$
- Small and large $\Delta \eta$ regions match on av side
- Small yield above background in large , region
- Jet yield in $\Delta\eta$ consistent with Jet in $\Delta\eta$ subtracting (Jet+Ridge)-Ridge

The Ridge in Cu+Cu

- Is there a Ridge in Cu+Cu?
- $\Delta \eta$ projection flat at large $\Delta \eta$
- Small and large $\Delta \eta$ regions match on av side
- Small yield above background in large , region
- Jet yield in $\Delta\eta$ consistent with Jet in $\Delta\eta$ subtracting (Jet+Ridge)-Ridge

Determination of yields and errors

3.0 GeV<p_ $_{T}^{trig}$ <6.0 GeV, 1.5 GeV<p_ $_{T}^{assoc}$ <p_ $_{T}^{trig}$ h-h, 0-20% Cu+Cu $\sqrt{s_{_{NN}}}$ = 200 GeV

fit with background as free parameter

• Background: B(1+2 $v_2^{\text{trig}} v_2^{\text{assoc}} \cos(2\Delta \Phi))$

- Different fit methods for determination of B
 - Zero Yield At Minimum (ZYAM)
 - 1 point, 3 points
 - B as Free parameter (used as best guess)
 - v_2 error
 - v_2 measurements in progress
 - upper bound for v_2 measured
 - $v_2 \approx 10-15\%$ depending on p_T , centrality
 - estimate for lower bound, near 0
 - Λ , $\overline{\Lambda}$, K^0_{S} , Ξ^- , Ξ^+ v₂ not measured
 - Assume quark scaling of h v₂ in Cu+Cu

Near-side Yield vs N_{part}

- Jet yield flat with N_{part} within errors
 - no v₂ or background error
 due to method
- Ridge yield
 - very small
 - flat with N_{part} within errors

No trigger particle type
 Data points de serie N_{part} offset for
 visibility

Jet yields: 10% error added to V⁰ and h triggers to account for track merging, 15% to E triggers

Jet yield
 comparable
 in Cu+Cu
 and Au+Au

Ridge yield consistent with N_{part} in Cu+Cu and Au+Au

CAR Christine Nattrass, Yale University

Jet yield comparable in Cu+Cu and Au+Au

 Ridge yield consistent with N part in Cu+Cu and Au+Au

Christine Nattrass, Yale University

SQM 2007 Levoča, Slovakia

Jet yield comparable in Cu+Cu and Au+Au

Ridge yield consistent with N part in Cu+Cu and Au+Au

Jet yield comparable in Cu+Cu and Au+Au

Ridge yield consistent with N part in Cu+Cu and Au+Au

Near-side yield vs p_trigger

- Jet yield rises with p_T^{trigger}
 in h-h
 - Yield roughly constant with centrality
- No particle type dependence within error bars
- Central Au+Au and 0-60% Cu+Cu jet yields comparable

AR Christine Nattrass, Yale University

Near-side yield vs p_T^{trigger}

- Jet yield rises with p_T^{trigger} in h-h
 - Yield roughly constant with centrality
- No particle type dependence within error bars
- Central Au+Au and 0-60% Cu+Cu jet yields comparable

p_T-distribution of associated particles

- Ridge spectra similar to the bulk
 - Cu+Cu measurements probably not possible
- Jet spectra are slightly harder
 - Cu+Cu T within error of Au+Au
 - Cu+Cu fit only to h-h

STAR Christine Nattrass, Yale University

SQM 2007 Levoča, Slovakia 21

p_{T} -distribution of associated particles

/N_{trigger}1/p_TdN/dp_T (near-side)

 10^{-2}

10⁻³

- Ridge spectra similar to the bulk
 - Cu+Cu measurements probably not possible
- Jet spectra are slightly harder
 - Cu+Cu T within error of Au+Au
 - Cu+Cu fit only to h-h

Trigger particle	T(ridge) MeV	T (jet) MeV
h+/-	438 ± 4 (stat.)	478 ± 8
K ⁰ s	406 ± 20 (stat.)	530 ± 61
A	416 ± 11 (stat.)	445 ± 49

Christine Nattrass, Yale University

Conclusions

- Ridge yields
 - Cu+Cu very small
 - Cu+Cu and Au+Au consistent at the same N_{part}
- No trigger particle type dependence within errors
 - including non-strange, and singly and doubly strange triggers
- Jet yields
 - Cu+Cu and Au+Au consistent at the same N_{part}
 - increases with p_{T trigger}
 - constant with centrality
 - independent of system

TAR Christine Nattrass, Yale University

Future work

Systematics

- Reduce systematic error from v₂
- Identified particle v₂
- Coming soon
 - Identified associated particles in Cu+Cu
 - Ω triggers
 - Comparisons to Au+Au See B. Abelev's SQM talk
 - Away-side yields
 - Energy dependence of Jet and Ridge
 yields
 R Christine Nattrass, Yale University

~1000 Ω triggers in central Cu+Cu with p_T>2.5 GeV/c! ~2000 in central Au+Au

SQM 2007 Levoča, Slovakia

24

STAR Collaboration

University of Illinois at Chicago - Argonne National Laboratory Institute of High Energy Physics - University of Birmingham Brookhaven National Laboratory - California Institute of Technology - University of California, Berkeley - University of California, Davis - University of California, Los Angeles - Carnegie Mellon University - Creighton University – Nuclear Physics Inst., Academy of Sciences - Laboratory of High Energy Physics - Particle Physics Laboratory - University of Frankfurt - Institute of Physics, Bhubaneswar - Indian Institute of Technology, Mumbai - Indiana University Cyclotron Facility - Institut de Recherches Subatomiques de Strasbourg - University of Jammu -Kent State University - Institute of Modern Physics - Lawrence Berkeley National Laboratory - Massachusetts Institute of Technology - Max-Planck-Institut fuer Physics -Michigan State University - Moscow Engineering Physics Institute - City College of New York - NIKHEF and Utrecht University - Ohio State University - Panjab University -Pennsylvania State University - Institute of High Energy Physics - Purdue University -Pusan National University - University of Rajasthan - Rice University - Instituto de Fisica da Universidade de Sao Paulo - University of Science and Technology of China -Shanghai Institue of Applied Physics - SUBATECH - Texas A&M University -University of Texas, Austin - Tsinghua University - Valparaiso University – Variable Energy Cyclotron Centre, Kolkata - Warsaw University of Technology - University of Washington - Wayne State University - Institute of Particle Physics - Yale University -University of Zagreb Thank you!

R Christine Nattrass, Yale University

STAR Christine Nattrass, Yale University

