

Probing the quark gluon plasma

Christine Nattrass University of Tennessee at Knoxville

Calculations done on the Titan supercomputer by the CJet collaboration https://sites.google.com/site/cjetsite/

Phase diagram of nuclear matter

Quark Gluon Plasma – a *liquid* of quarks and gluons created at temperatures above ~170 MeV $(2 \cdot 10^{12} \text{K})$ – over a million times hotter than the core of the sun

How to make a Quark Gluon Plasma

The phase transition in the laboratory

Relativistic Heavy Ion Collider

Large Hadron Collider

Upton, NY Geneva, Switzerland 1.2km diameter 8.6km diameter p+p, d+Au, Cu+Cu, Au+Au, U+Up+p, *p*+*Pb*, Pb+Pb $\sqrt{s_{_{\rm NN}}} = 9 - 200 \text{ GeV}$ $\sqrt{s_{MN}} = 2.76 \text{ GeV}, 5.5 \text{ TeV}$ LHC T. GeV Quark Gluon Plasma critical point RHIC 0.1 hadron gas auark Core of neutron stars? nuclear matter CFL matter vacuum phases μ_B , GeV

Comparison of colliders

	RHIC	LHC	
$\sqrt{\mathrm{s_{_{NN}}}(\mathrm{GeV})}$	9-200	2760, 5500	center of mass energy
$dN_{ch}/d\eta$	~1200	~1600	number of particles
T/T _c	1.9	3.0-4.2	temperature
ε (GeV/fm ³)	5	~15	energy density
$ au_{QGP}$ (fm/c)	2-4	>10	lifetime of QGP

RHIC and LHC:Cover 2 –3 decades of energy ($\sqrt{s_{_{NN}}}$ = 9 GeV –5.5 TeV)To discover the properties of hot nuclear matter at T ~ 150 –600 MeV

p+p collisions

3D image of each collision

Pb+Pb collisions

Probing the Quark Gluon Plasma

Want a probe which traveled through the collision QGP is very short-lived (~1-10 fm/c) \rightarrow cannot use an external probe

Probes of the Quark Gluon Plasma

Want a probe which traveled through the medium QGP is short lived \rightarrow need a probe created in the collision

Probes of the Quark Gluon Plasma

Want a probe which traveled through the medium QGP is short lived \rightarrow need a probe created in the collision We expect the medium to be dense \rightarrow absorb/modify probe

Jets

Jets – hard parton scattering leads to back-to-back quarks or gluons, which then fragment as a columnated spray of particles

Jet reconstruction

- Identify all of the particles in the jet → parton energy, momentum
- Difficult in heavy ion collisions but possible!

Jets

Quenched jets

- One of the jets is absorbed by the medium
- The quark or gluon has equilibrated with the medium
- Phys. Rev. Lett. 105, 252303 (2010)

Christine Nattrass, University of Tennessee at Knoxville, SESAPS 2013

ATLAS

Nuclear modification factor

- Measure spectra of probe (jets) and compare to those in p+p collisions or peripheral A+A collisions
- If high-p₁ probes (jets) are suppressed, this is evidence of jet quenching

Nuclear modification factor R_{AA} *RHIC*

- Electromagnetic probes consistent with no modification medium is transparent to them
- Strong probes significant suppression medium is opaque to them

Nuclear modification factor $R_{_{AA}}$ at LHC

Fully unfolded inclusive jet R_{AA} pp 2.76 TeV reference

p+Pb as a control

Measuring temperature

Thermal photons

PHENIX collaboration: Au+Au collisions at $\sqrt{s_{_{NN}}}$ =200 GeV **Inverse slope:** T = 221 +/- 19 (stat) +/- 19 (syst) MeV

Building a quarkonium-thermometer

Suppression of quarkonia in p+Pb

Suppression of quarkonia in d+Au

Take home messages

- If we get nuclear matter dense enough, we make a new phase of matter, which we produce in high energy heavy ion collisions.
- This medium is transparent to colored probes and translucent to electromagnetic probes...
- ...And extremely hot and dense.

