

LHC

ALICE

The ALICE Collaboration

- ~1000 Members 63% from CERN member states
 - ~30 Countries
 - ~100 Institutes
 - ~150 MCHF capital cost (+magnet)

US ALICE

11 Institutions 53 members (inc. 12 grad. Students) Cal. St. U. –San Luis Obispo, Creighton University, University of Houston, Lawrence Berkeley Nat. Lab, Lawrence Livermore Nat.
Lab, Oak Ridge Nat. Lab, Ohio State University, Purdue University, University of Tennessee, Wayne State University, Yale University

QCD at high temperatures

At RHIC we learned...

Simple Expectations for Heavy Ion Physics at LHC

	SPS	RHIC	LHC	
$\sqrt{s_{_{\rm NN}}}$ (GeV)	17	200	5500	28x
$dN_{dh}/d\eta$	~700	~1200	~2000-8000	2-7x
T/T _c	1.1	1.9	3.0-4.2	Hotter
ε (GeV/fm ³)	3	5	15-60	Denser
$\tau_{\rm QP}$ (fm/c)	≤2	2-4	>10	Longer lived

RHIC and LHC:Cover 2 –3 decades of energy ($\sqrt{s}_{NN} \sim 20 \text{ GeV} - 5.5 \text{ TeV}$)To discover the properties of hot QCD at T ~ 150 –600 MeV

Probes of a Quark Gluon Plasma

Soft Probes

- Determine expansion dynamics: will be different from RHIC
- Soft physics measurements: RHIC with extended PID
- T, $\mu_{\rm B}$, ϵ , spectra, collective effects (flow),...

Hard Probes –Jet Quenching

• Jets, γ , π^0 , leading particles to large $p_{_{\rm T}}$

Hard Probes –Heavy Quarks

- Displaced vertices ($D^{O} \rightarrow K^{-}\pi^{+}$) from TPC/ITS
- Electrons in Transition Radiation Detector (TRD)

Hard Probes –Quarkonia

• J/ψ , Υ , Υ ' (excellent), Υ ''(2-3 yrs), ψ '???

Experimental Challenges & ALICE Solutions

• Extreme particle densities ($dN_{dh}/d\eta \sim 2000 \rightarrow$ several thousand)

500 times p+p at LHC, 2 –4 times Au+Au at RHIC

→ ALICE solution for particle densities : high granularity 3D tracking, long path-lengths from interaction vertex [e.g. EMCal at 4.5 m]

• Large dynamic range in p_T

from very soft (0.1 GeV/c) to fairly hard (100 GeV/c)

→ALICE solution to extend p_T range : thin detectors, modest field (low p_T), large lever arm for tracking & resolution at large p_T ALICE: ~ 10% X₀ inside r < 2.5 m, B = 0.5T

• Measure & ID many particles

requires: secondary vertices, lepton ID, hadron ID

→ALICE solution for extended particle ID : employ many technologies dE/dx, Cherenkov & transition rad., TOF, calorimeters, muon filter, topological.

+Modest luminosity and interaction rates 10 kHz (Pb + Pb)

- Every Pb+Pb event is interesting
- ALICE rates \rightarrow allow slow detectors (TPC, SDD), moderate radiation hardness

ALICE detectors and acceptance

Central barrel- $0.9 < \eta < 0.9$

- $\Delta \phi = 2\pi$ tracking, PID (TPC/ITS/TRD/ToF)
- single arm RICH (HMPID)
- single arm e.m. cal (PHOS)
- jet calorimeter (EMCal)

Forward muon arm-2.4 $< \eta <$ -4

absorber, 3 T-m dipole magnet
 5 tracking + 2 trigger planes

Multiplicity detectors- $3.4 < \eta < 5$

including photon counting in PMD

Trigger & timing detectors

- 6 Zero Degree Calorimeters
- T0:ring of quartz window PMT's
- V0:ring of scintillator Paddles

Christine Nattrass (UTK), SES APS, November 13, 2009

The Time Projection Chamber

Specifications

- Designed for $dN_{d\eta}/d\eta$ =8000
- |η|<0.9, radius 0.9-2.5m
- In a 0.5 T Solenoidal Field
- 570k channels, 80MB/event
- 3% radiation length
- Outer diameter 5 m, Length 5 m
- Largest ever

TRD, TOF, HMPID

Transition Radiation Detector

- $p_T > 1$ GeV electron id, $p_T > 3$ GeV trigger
- 540 modules, 4.8 cm radiator with 1.2M channels

• MWPC readout

Time Of Flight

- Multi-gap Resistive Plate Chambers (MRPC)
- 50 ps resolution at ~5m
- $|\eta| < 0.85, \Delta \phi = 2\pi$

High Momentum PID

 Proximity focused, Ring Imaging Cherenkov RICH

• |η|<0.6, Δφ=π/3

PHOS

- PHOton Spectrometer
 PbO₄W crystal calorimeter
- γ,π⁰,η for 1<p<100 GeV
- $|\eta| < 0.12, \Delta \phi = 100^{\circ}$
- $\sigma(E)/E = 3\%$, $\sigma(x,y)=4mm$

EMCal

Funding approval: Feb. 2008 (~ALICE Upgrade: US, Italy, France, CERN, Finland)

- 7+2/3 US Super-Modules (SM)
- 3 EU SMs (Italy and France)
- Construct and Install 2008-2011

- Lead-scintillator sampling calorimeter
- 13 k towers
- Each tower $\Delta \eta X \Delta \phi = 0.014 X 0.014$
- Shashlik geometry
- Avalanche phototodiodes
- Δη=1.4,Δφ=107°
- $\sigma(E)/E=0.12/\sqrt{E}+0.02$

Simulated event

Christine Nattrass (UTK), SES APS, November 13, 2009

ALICE Performance

TPC Performance

Day 1 p+p physics

- Global event properties
- Constrain/tune PYTHIA

Christine Nattrass (UTK), SES APS, November 13, 2009

Hard probes

Hard Probes (from initial parton scattering): Heavy quark production High-p_T hadrons Jets

Parton energy loss \rightarrow modification of jets and leading particles & jet-correlations

Hard probe rates in ALICE

ALICE hard physics capabilities:

- Electron/hadron discrimination (TRD, EMCal)
- μ measurements(forward muon arm)
- Good γ/π° discrimination (EMCal, PHOS)
- Fast trigger on jets(EMCal)

Hard Probes statistics in ALICE:

 10^{4} /year in minbias $Pb+Pb^{*}$

- Inclusive jets: ET ~ 200 GeV
- Dijets: $E_{T} \sim 170 \text{ GeV}$
- π^{0} : pt ~ 75 GeV/c
- Inclusive γ : pT ~ 45 GeV/c
- Inclusive e: pT ~ 30 GeV/c

*One year of running = one month of Pb+Pb collisions

Medium modification of fragmentation

Fragmentation along jet axis: $z = p_{haton} / p_{paton}$

 $\xi = \ln(E_{jet}/p_{haton}) \sim \ln(1/z)$

Quarkonia

Heavy Quarks

mass/color dependence of parton E-loss

- Displaced vertices $(D^0 \rightarrow K^- \pi^+)$ from TPC/ITS
- Electrons in Transition Radiation Detector (TRD)

Quarkonia

Initial T, Debye screening, recombination,...

• J/ ψ , Υ , Υ ' (excellent), Υ ''(2-3 yrs), ψ ' (very difficult)

Conclusions

- ALICE is able to
 - Measure thousands of particles per event
 - Measure particles over a wide kinematic range (0.1-100 GeV/c)
 - Identify many particles over a wide kinematic range
 - π , k, p, e, μ , Λ , K^0_{s} , Ξ , Ω , D^0
- Expect exciting results from p+p soon

Take a stack of fliers home and post them in your department!

January 15-17, 2010

Goal: To help undergraduate women	 Research talks 		
continue in physics by	 Panel discussions about graduate school 		
Providing the opportunity to experience a	and careers in physics		
professional conference	 Presentations and discussions about 		
•Providing Information about graduate	women in physics		
school and professions in physics	 Laboratory tours 		
Introducing them to other women in physics	 Student research talks 		
-	 Student poster session 		

Application deadline: Dec. 15, 2010

Applications received by Nov. 15, 2009 will receive full consideration for travel awards. Notification of travel awards and room reservation instructions will begin Nov. 15th and continue until funds are exhausted. For more information and for application forms, see http://www.southeastcuwp.org/

EMCal Assembly

ALICE

