The near-side in STAR

Christine Nattrass (Yale University) for the STAR Collaboration
Outline

• Introduction
• The *Jet* – energy, system, and particle type dependence
• The *Ridge* – energy, system, and particle type dependence
• Comparison to models
• Conclusion
Introduction
Di-hadron correlations

- Define a high-pT trigger particle
- Look at the distribution of particles relative to that trigger particle
Motivation – Jet and Ridge

- Long-range pseudorapidity ($\Delta \eta$) correlations observed by STAR in Au+Au at intermediate p_T
- Near side jet peak sits on plateau (Ridge)
- Significant contribution to the near-side yield in central Au+Au
Method: Yield extraction

- *Ridge* previously observed to be independent in $\Delta \eta$ in Au+Au

- To determine relative contributions, find yields for near-side, take $\Delta \Phi$ projections in
 - $-0.75 < \Delta \eta < 0.75$ *Jet + Ridge*
 - $0.75 < |\Delta \eta| < 1.75$ *Ridge*
 - $Jet = (Jet + Ridge) - Ridge \times 0.75/1.0$
 - $Ridge = yield from -1.75 < \Delta \eta < 1.75 - Jet$ yield

- Flow contributions to Jet cancel
 - v_2 independent of η for $|\eta| < 1$
 - Yield: number of particles in Jet, Ridge
The Jet

Au+Au 0-10% STAR preliminary

3<p_{trigger}<4 GeV

p_{assoc} > 2 GeV

Jet

Ridge
Jet is like $p+p$

- Spectra of particles associated with Jet harder than inclusive

Putschke WWND08

$\text{P}_{\text{T,assoc}} > 2 \text{ GeV}$
Jet composition

- Baryon/meson ratios in Jet in Cu+Cu and Au+Au similar to p+p for both strange and non-strange particles

J. Bielcikova (STAR), v:0707.3100 [nucl-ex]
C. Nattrass (STAR), arXiv:0804.4683/nucl-ex
p_T^{trigger} dependence

- No system dependence observed in the data
- Pythia 8.1 describes trends in data up to a scaling factor
 - Gets energy dependence right
 - Stronger deviations at low p_T^{trigger}, as expected
Pythia comparisons

- What can Pythia tell us?
 - Higher z_T (lower jet energy) in 62 GeV for same p_T^{trigger}

p_{THat} = the parameter in Pythia for the transverse momentum in the hard subprocess
Pythia comparisons

- What can Pythia tell us?
 - Higher z_T (lower jet energy) in 62 GeV for same p_T^{trigger}

$p_{\text{THat}} = \text{the parameter in Pythia for the transverse momentum in the hard subprocess}$

Christine Nattrass (STAR), RHIC/AGS User's Meeting, June 2, 2009
$p_T^{\text{associated}}$ dependence

- No system dependence
- Pythia 8.1 slightly harder than data
- Diverges slightly from Pythia 8.1 at lower $p_T^{\text{associated}}$

\[\sqrt{s_{NN}} = 62 \text{ GeV} \]
\[\sqrt{s_{NN}} = 200 \text{ GeV} \]

<table>
<thead>
<tr>
<th>System</th>
<th>317 ± 26</th>
<th>445 ± 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu+Cu</td>
<td>355 ± 21</td>
<td>478 ± 8</td>
</tr>
<tr>
<td>Au+Au</td>
<td>469 ± 8</td>
<td>469 ± 8</td>
</tr>
<tr>
<td>Pythia</td>
<td>417 ± 9</td>
<td>491 ± 3</td>
</tr>
</tbody>
</table>

J. Bielcikova (STAR), arXiv:0806.2261/nucl-ex
C. Nattrass (STAR), arXiv:0804.4683/nucl-ex
N_{part} dependence

- No system dependence
- Some deviations from Pythia 8.1 with increase in N_{part}
 - Incomplete Ridge subtraction?
 - Jet modification at low p_T?

$3.0 < p_T^{\text{trigger}} < 6.0 \text{ GeV/c}$
$1.5 \text{ GeV/c} < p_T^{\text{assoc}} < p_T^{\text{trigger}}$

STAR Preliminary
Conclusions: Jet

• Particle ratios similar to p+p
 – Separation of Jet and Ridge works
 – Effects of triggers which don't come from jets small
 – Pythia can be used to estimate z_T distributions, jet energy

• Pythia describes data well
 – Scaling factor needed but Pythia 8.1 is not as tuned as earlier versions
 – Energy dependence in Jet is described well in Pythia
 – Trends for p_T^{trigger}, p_T^{assoc} dependence right

→ Jet production mechanism dominated by fragmentation
The Ridge

Au+Au 0-10% STAR preliminary

3<p_{T,trigger}<4 GeV
p_{t,assoc}>2 GeV

Ridge

Jet
Ridge is like bulk

- Spectra of particles associated with Ridge similar to inclusive

Putschke WWND08

\[p_{T,\text{assoc}} > 2 \text{ GeV} \]
Ridge composition

- Baryon/meson ratios in Ridge similar to bulk for both strange and non-strange particles

J. Bielcikova (STAR), v:0707.3100 [nucl-ex]
C. Nattrass (STAR), arXiv:0804.4683/nucl-ex
Identified trigger: Near-side Yield vs N_{part}

3.0 GeV/c < p_T^{trigger} 6.0 GeV/c; 1.5 GeV/c < $p_T^{\text{associated}}$ < p

Ridge yield - No trigger type dependence

Ridge yield/trigger vs N_{part}

STAR preliminary

Au+Au $\sqrt{s_{NN}}$=200 GeV from nucl-ex/0701047
Cu+Cu $\sqrt{s_{NN}}$=200 GeV from SQM2007
Data points at same N_{part} offset for visibility
Ridge yield vs. pt, trig in Au+Au

- Ridge yield persists to highest trigger pt ⇒ correlated with jet production

Putschke
WWND08
Ridge vs N_{part}

- No system dependence at given N_{part}
Ridge vs N_{part}

- No system dependence at given N_{part}
- *Ridge/Jet* Ratio independent of collision energy
Jet/Ridge w.r.t. reaction plane

Feng QM08
Konzer QM09

20-60% Au+Au 200 GeV

Jet part, near-side
Ridge part, near-side

• Ridge yield decreases with Ψ_S. Smaller ridge yield at larger Ψ_S

• Jet yield approx. independent of Ψ_S and comparable with d+Au

Jet yield independent of Ψ_S, consistent with vacuum fragmentation after energy loss and lost energy deposited in ridge, if medium is “black” out-of-plane and more “gray” in-plane for surviving jets.

Ridge asymmetric in $\Delta \phi$, consistent with surface emission...
3-particle correlations

- **Ridge** appears uniform event-by-event within STAR acceptance
- Charge sign dependence:
 - All signs the same: no *Jet*, *Ridge* only
 - Friday Plenary session talk (Netrakanti)

\[
\begin{align*}
\Delta \eta_1 &= A1-T \\
\Delta \eta_2 &= A2-T
\end{align*}
\]

\[
3<p_T^{\text{trigger}}<10 \quad 1<p_T^{\text{assoc}}<3 \quad |\Delta \phi|<0.7
\]

Christine Nattrass (STAR), RHIC/AGS User's Meeting, June 2, 2009
Conclusions: Ridge

- Extensive data on Ridge
 - Cu+Cu, Au+Au consistent at same N_{part}
 - $Ridge/Jet$ ratio independent of energy
 - Persists to high p_T^{trigger}
 - $Ridge$ looks like bulk
 - $p_T^{\text{associated}}$ dependence, particle composition
 - Appears isotropic in $\Delta \eta$
Comparisons to models
Models

• **Radial flow+trigger bias**
 – Works for one set of kinematic cuts in central Au+Au at 200 GeV
 – Need more detailed comparisons (energy dependence)
 – Model needs some refinements (momentum conservation)

• **Plasma instability**
 Anisotropic plasma, P. Romatschke, PRC,75014901 (2007)
 – So far unable to make enough Ridge without Radial flow+trigger bias
Models

- **Longitudinal flow**
 - Problems due to $\Delta \eta$ width

- **Momentum kick**
 - Fits data well, including energy dependence

- **Recombination**
 Medium heating + recombination, Chiu & Hwa, PRC72, 034903
 - No quantitative comparisons
Conclusions

- Considerable evidence that Jet is dominantly produced by fragmentation
 - Can we use this information to learn more about the Ridge?

- Several models for the Ridge, few quantitative comparisons
 - Several depend on hydrodynamics
 - Need better calculations – more quantitative, more than central Au+Au

- Future:
 - More energy dependence (RHIC beam energy scan, LHC)
 - Jet reconstruction – more detailed studies of Ridge?
 - Ridge in γ-jet correlations?