Jet physics in ALICE

Christine Nattrass University of Tennessee at Knoxville

The Time Projection Chamber

Specifications

- Designed for $dN_{ch}/d\eta$ =8000
- |η|<0.9, radius 0.9-2.5m
- In a 0.5 T Solenoidal Field
- 570k channels, 80MB/event
- 3% radiation length
- Outer diameter 5 m, Length 5 m
- Largest ever

Particle identification

A simple picture of a heavy ion collision

Jets as a probe of the quark gluon plasma

One jet "absorbed" by the medium

Single particles

- Measure spectra of hadrons and compare to those in p+p collisions or peripheral A+A collisions
- If high-p_T hadrons are suppressed, this is evidence of jet quenching
- Assumption: sufficiently high- p_{T} hadrons mostly come from jets
- Unmodified spectra:

Experimental results

Experimental results

Look in two dimensions

d+Au

In two dimensions in Au+Au

Dihadron Correlations

• Study two-particle correlations with per-trigger yields

$$\frac{1}{N_{trig}} \frac{dN_{assoc}}{d\Delta \varphi} \quad \text{and} \\ \underset{\text{Lower } \mathbf{p}_{\mathrm{T}}}{1}$$

$$\frac{1}{N_{trig}} \frac{d^2 N_{assoc}}{d\Delta \varphi d\Delta r_{trig}}$$

<u>
</u>

- Ridge
- Hydrodynamics, flow
- High p_T
 - Quenching/suppression, broadening
- Calculate near side (around $\phi = 0$) and away side $(\phi = \pi)$ yields
- Compare central and peripheral $\rightarrow I_{CP}$
- Compare AA and pp \rightarrow I_{AA}

Remaining slides gratuitously stolen from Jan Fiete Grosse-Oertringhaus at Moriond Measurement of ICP and IAA - Jan Fiete

Christine Nattrass (UTK), PHENIX Focus, 12 April 2011

(Ly φ) 1.05 1.0

3.0 < p_{T.trig} < 4.0 2.0 < p_{T.assoc} < 3.0 0-10%

Pedestal and Flow

- To calculate yields, pedestal needs to be determined
- Fit in region around $\pi/2$ (ZYAM)
 - Different ways to estimate uncertainty
- Estimate radial flow (v₂) contribution using ALICE flow measurement
 - Flow subtraction quite controversial
- → Measure in a region where the signal dominates over pedestal and v₂ modulation (8 GeV/c < p_{T,trig} < 15 GeV/c)</p>
- → Indicate difference in measurement if v₂ was subtracted

Yield Extraction

- After pedestal (and optionally v₂) subtraction), integrate to obtain yield Y
 - Near side $-0.7 < \phi < 0.7$
 - Away side $-0.7 < \phi \pi < 0.7$
- In bins of associated p_T : $p_{T,assoc}$
- Divide yields to obtain I_{CP} and I_{AA}

$$I_{CP}(p_{T,trig}; p_{T,assoc}) = \frac{Y_{central}^{AA}(p_{T,trig}; p_{T,assoc})}{Y_{peripheral}^{AA}(p_{T,trig}; p_{T,assoc})}$$
$$I_{AA}(p_{T,trig}; p_{T,assoc}) = \frac{Y^{AA}(p_{T,trig}; p_{T,assoc})}{Y^{pp}(p_{T,trig}; p_{T,assoc})}$$

integration windows

Measurement of ICP and IAA - Jan Fiete Grosse-Oetringhaus

Christine Nattrass (UTK), PHENIX Focus, 12 April 2011

18

I_{CP}

Measurement of ICP and IAA - Jan Fiete Grosse-Oetringhaus

Christine Nattrass (UTK), PHENIX Focus, 12 April 2011

19

I_{CP} (2)

Slightly enhanced near-side: I_{CP} ~ 1.2 ... unexpected and interesting
 Away side suppressed: I_{CP} ~ 0.6 ... expected from in-medium energy loss
 v₂ contribution small except in lowest bin, there v₃ subtraction may be significant

I_{AA} Reference

- Interesting to study yield with respect to unquenched (pp) case
 - No pp data taken at 2.76 TeV, yet
 - Use a MC
- Pythia6 tune Perugia-0 has been found to describe dihadron correlations at 0.9 and 7 TeV well
 - Using a scaling factor between 0.8 and 1
 - Interpolate to 2.76 TeV
 - Factor $0.93 \pm 13\%$ (stat/syst)
- → Use scaled Pythia reference to calculate $I_{AA,Pythia}$

Measurement of ICP and IAA - Jan Fiete

I_{AA,Pythia}

I_{AA,Pythia}: ALICE vs. RHIC

•PHENIX subtracts $v_2 \rightarrow compare ALICE$ line with PHENIX •STAR measurement in slightly different variable (z_T) and d+Au reference

Conclusions

- Jet suppression at the LHC is greater than at RHIC
 - We will be able to quantify this better once we analyze the 2.76 TeV data
- The ridge is also at the LHC

More information on ALICE

- ALICE web site
- US LHC Blog posts

TRD, TOF, HMPID

Transition Radiation Detector

- $p_T > 1$ GeV electron id, $p_T > 3$ GeV trigger
- 540 modules, 4.8 cm radiator with 1.2M channels

• MWPC readout

Time Of Flight

- Multi-gap Resistive Plate Chambers (MRPC)
- 50 ps resolution at ~5m
- $|\eta| < 0.85, \Delta \phi = 2\pi$

High Momentum PID

 Proximity focused, Ring Imaging Cherenkov RICH

- $|\eta| < 0.6, \Delta \phi = \pi/3$
- PID 1<p<6 GeV

PHOS

- PHOton Spectrometer
 PbO₄W crystal calorimeter
 γ,π⁰,η for 1<p<100 GeV
- $|\eta| < 0.12, \Delta \phi = 100^{\circ}$
- $\sigma(E)/E = 3\%$, $\sigma(x,y)=4mm$

EMCal

Funding approval: Feb. 2008 (~ALICE Upgrade: US, Italy, France, CERN, Finland)

- 7+2/3 US Super-Modules (SM)
- 3 EU SMs (Italy and France)
- Construct and Install 2008-2011

- Lead-scintillator sampling calorimeter
- 13 k towers
- Each tower $\Delta \eta X \Delta \phi = 0.014 X 0.014$
- Shashlik geometry
- Avalanche phototodiodes
- Δη=1.4,Δφ=107°
- $\sigma(E)/E=0.12/\sqrt{E}+0.02$

EMCal Assembly

- 3072 identical modules, 2x2 towers
- 1.5° taper in η
- Tower granularity $\delta \eta = \delta \phi = 0.014$

