The ALICE experiment

at the Large Hadron Collider

Christine Nattrass University of Tennessee at Knoxville

Exploring QCD at high temperatures

Phase diagram of nuclear matter

Simple Expectations for Heavy Ion Physics at LHC

	SPS	RHIC	LHC	
$\sqrt{s_{_{\rm NN}}}$ (GeV)	17	200	5500	28x
$dN_{ch}/d\eta$	~700	~1200	~2000-8000	2-7x
T/T _c	1.1	1.9	3.0-4.2	Hotter
ε (GeV/fm ³)	3	5	15-60	Denser
$ au_{_{QGP}} (fm/c)$	≤2	2-4	>10	Longer lived

RHIC and LHC:Cover 2 –3 decades of energy ($\sqrt{s_{_{NN}}} \sim 20 \text{ GeV} - 5.5 \text{ TeV}$)To discover the properties of hot QCD at T ~ 150 –600 MeV

p+p collisions

Pb+Pb collisions

~1000 members
~30 countries
~100 institutes

ALL

ALICE

The ALICE Collaboration

- ~1000 Members 63% from CERN member states
 - ~30 Countries
 - ~100 Institutes
 - ~150 MCHF capital cost (+magnet)

US ALICE

11 Institutions 53 members (inc. 12 grad. Students) Cal. St. U. –San Luis Obispo, Creighton University, University of Houston, Lawrence Berkeley Nat. Lab, Lawrence Livermore Nat.
Lab, Oak Ridge Nat. Lab, Ohio State University, Purdue University, University of Tennessee, Wayne State University, Yale University

UT and ORNL people on ALICE

Garishvili

Soren Sorensen

> Christine Nattrass

Ken Read Irakli Martashvili Rebecca Scott Joel Mazer

David Silvermyr

•EMCal hardware support

- •EMCal Simulations and calibrations
- •Measurements using EMCal
 - π^0 mesons
 - heavy flavor
 - jets

Awes

- transverse energy
- •Upgrades
 - Di-jet calorimeter
 - Forward Calorimeter

EMCal

- EMCal: -0.7 < η < 0.7, 80°< ϕ < 120° in 2010 \rightarrow 80°< ϕ < 180° in January 2011
 - Ahead of schedule!
- DCAL: -0.7 < η < 0.7, 260°< ϕ < 320° in 2013

- Lead-scintillator sampling calorimeter
- 13 k towers
- Each tower $\Delta \eta X \Delta \phi = 0.014 X 0.014$
- Shashlik geometry
- Avalanche phototodiodes
- Δη=1.4,Δφ=107°
- $\sigma(E)/E=0.12/\sqrt{E}+0.02$

EMCal Assembly

Soren Sorensen

T

Irakli Martashvili

Capabilities

- Measurements of γ and π^0
- Heavy flavor measurements
 - Charm and beauty quarks
- Measurements of jets
 - Access to quark and gluon momenta Partonic energy loss

π⁰: Single particle energy lossγ: Thermal photons → temperature

Flavor-dependent energy loss

Main differences between ATLAS and CMS

- Low momentum tracking ($p_T > 100 \text{ MeV/c vs } p_T > 900 \text{ MeV/c}$)
- Particle identification

Hard probe rates in ALICE

ALICE hard physics capabilities:

- Electron/hadron discrimination (TRD, EMCal)
- μ measurements(forward muon arm)
- Good γ/π° discrimination (EMCal, PHOS)
- Fast trigger on jets(EMCal)

Hard Probes statistics in ALICE:

10⁴/year minbias Pb+Pb at nominal luminosity*

- Inclusive jets: ET ~ 200 GeV
- Dijets: $E_{T} \sim 170 \text{ GeV}$
- π^{0} : pt ~ 75 GeV/c
- Inclusive γ : pT ~ 45 GeV/c
- Inclusive e: pT~ 30 GeV/c

*One year of running = one month of Pb+Pb collisions

Single particle measurements

 π^0 measurements

Single particles

- Measure spectra of hadrons and compare to those in p+p collisions or peripheral A+A collisions
- If high- p_T hadrons are suppressed, this is evidence of jet quenching
- Assumption: sufficiently high- p_{T} hadrons mostly come from jets
- Unmodified spectra:

Experimental results

- Produced in early stages of the collision
 - Must be from energetic collisions because of mass
- Energy loss and flow are related to the transport properties of the medium in heavy ion collisions
 - Light quark data indicate
 - Medium evolves as if a fluid of quarks at equilibrium
 - Energy loss in medium is large
 - Heavy quarks may propagate through the medium differently

Heavy flavor decay

	Decay	Fraction	
\boldsymbol{D}^{\pm}	$e^+ v_e$ anything	16.07± 0.30 %	
D^0	e ⁺ anything	6.49 ± 0.11 %	1/ (-)
B^{\pm}	$1^+ v_1$ anything	10.99 ± 0.28 %	
B^0	$1^+ v_1$ anything	10.33 ± 0.28 %	
	K· T	0	

- Identify electrons
- Background subtraction
- Efficiency and acceptance
- Heavy flavor p_{T} spectrum
- Heavy flavor R_{AA}

- \rightarrow Complicated analysis
- → Requires identification of electrons at high momentum
- Separate charm and beauty
- Measure angular dependence of electron distribution

Stolen from Rebecca Scott's thesis proposal

Particle identification

Christine Nattrass (UTK), ORNL Brown Bag Seminar, March 9, 2012

Electron identification

- Electron m≪p
- $E/p\approx 1$ for electrons
- E/p<1 for hadrons
- EMCal can be used to identify electrons even at very high momenta

Non-photonic electrons

Without EMCal

With **EMCal**

Efficiency corrected non-photonic electrons

Probes of the Quark Gluon Plasma

Want a probe which traveled through the collision QGP is short lived \rightarrow need a probe created in the collision

Probes of the Quark Gluon Plasma

Want a probe which traveled through the medium QGP is short lived \rightarrow need a probe created in the collision We expect the medium to be dense \rightarrow absorb/modify probe

Jets – hard parton scattering leads to back-to-back quarks or gluons, which then fragment as a columnated spray of particles

Inclusive spectra

R_{AA} : From RHIC to the LHC

- Much greater kinematic reach at the LHC
- Smaller systematic errors
- Comparison between RHIC and LHC: studies of partonic energy loss at different regions on the phase diagram

Conclusions

- EMCal useful for measurements of
 - Measurements of γ and π^0
 - Heavy flavor measurements
 - Charm and beauty quarks
 - Measurements of jets
 - Access to quark and gluon momenta

Plus other things I haven't talked about

Jets – azimuthal correlations

Select high momentum particles \rightarrow biased towards jets

Jets at the LHC

Jet broadening

- QPYTHIA not optimized (yet) -do not draw conclusions from shape differences
- Jet energy profile (Au+Au data) BROADENED indicating JET QUENCHING
- Small experimental systematic uncertainties in measurements (ratios from same data set) →a precision measurement in ALICE

Jet reconstruction algorithms

Sequential recombination: Cluster pairs of objects close in relative p_{τ}

4. K_T (starting point: low p_T particles)
5. Anti-K_T (starting point: high p_T particles)

6. Gaussian filtering. Y. Lai, B. Cole arXiv:0806.1499

Background subtraction: Cocktail Method

Steps for the cocktail method:

- a) determine all other processes producing electrons
- b) determine the relative weight
- c) determine the momentum and rapidity distribution

Photonic electrons: $\gamma \rightarrow e^+ e^-$, $\pi^0 \rightarrow \gamma e^+ e^-$, $\eta \rightarrow \gamma e^+ e^-$...

Centrality dependence of dN_{ch}/dη

Centrality dependence of $dN_{ch}/d\eta$

Transverse Energy

$\sqrt{s_{NN}}$ dependence

- $dN_{ch}/d\eta/(0.5*N_{part}) \sim 8$
- **2.1 x RHIC** 1.9 x pp (NSD) at 2.36 TeV
- growth with \sqrt{s} faster in AA than pp

- $dE_T/d\eta/(0.5*N_{part}) \sim 9 \text{ in } 0-5\%$
- ~5% increase of N_{part} (353 \rightarrow 383) \rightarrow 2.7 x RHIC (consistent with 20% increase of $\langle p_x \rangle$)

Grows faster than simple logarithmic scaling extrapolated from lower energy

Christine Nattrass (UTK), ORNL Brown Bag Seminar, March 9, 2012

Probes of the Quark Gluon Plasma

Want a probe which traveled through the collision QGP is short lived \rightarrow need a probe created in the collision We expect the medium to be dense \rightarrow absorb probe

Single particles

Measure spectra of hadrons and compare to those in p+p collisions or peripheral A+A collisions

If high- p_{T} hadrons are suppressed, this is evidence of jet quenching

Assumption: sufficiently high- p_T hadrons mostly come from jets Unmodified spectra:

Christine Nattrass (UTK), ORNL Brown Bag Seminar, March 9, 2012

Nuclear modification factor (R_{Λ}

Nuclear modification factor (R_{Λ})

Baryon anomaly: Λ/K^0_{c}

Baryon anomaly: Λ/K^0_{c}

Charm nuclear modification factor

Conclusions

- Charged particle production and transverse energy follow same trends as seen at RHIC
- Energy higher than experimental extrapolation, lower than many models
- High p_T particle production suppressed to ~0.15 of what we would expect from scaling p+p collisions \rightarrow hot, dense medium produced
- Significant suppression observed even for heavy quarks

Backup slides

Charm cross section

Christine Nattrass (UTK), ORNL Brown Bag Seminar, March 9, 2012

pp