The Jet
The Ridge
And what we know about them

Christine Nattrass
Yale University
Outline

- Introduction to RHIC
- Introduction to the Ridge
- Central Au+Au $\sqrt{s_{NN}} = 200$ GeV
- The Jet – energy, system, and particle type dependence
- The Ridge – energy, system, and particle type dependence
- Comparison to theories
- Conclusion
Phase diagram of nuclear matter

- Lattice says crossover at $\mu_B = 0$
- Some discussion on methods to extract T_C (175 $\leq T_C/\text{MeV} \leq 191$)
- Lattice suggest the transition becomes 1st order at μ_B above the critical point (2nd order at the CP)
The phase transition in the laboratory

Collision
pre-equilibrium

QGP

Hadron Gas

Phase Transition/Cross-Over T_c
Chemical Freeze-Out (incl. collisions cease) T_{ch}
Thermal Freeze-Out (el. collisions cease) T_{fo}

Time
Relativistic Heavy Ion Collider
PHOBOS

- Coverage:
 With tracking:
 $0<\phi<0.2$, $x2$
 $0<\eta<1.5$
 Without tracking:
 $0<\phi<2\pi$
 $-3<\eta<3$
PHENIX

- Coverage:

 $0 < \phi < \pi/2$, x^2

 $-0.35 < \eta < 0.35$
STAR

- Coverage: $0<\phi<2\pi$
- $-1<\eta<1$
- Electromagnetic Calorimeter allows triggering
Why study jets in heavy ion collisions?

- Hard parton scattering ⇒ back-to-back jets
 - Good (calibrated?) probe of the medium
- High multiplicity in A+A collisions
 - Individual jets difficult to reconstruct
 - Study jets via correlations of particles in space

• both azimuth and pseudorapidity
Why study jets in heavy ion collisions?

- Hard parton scattering ⇒ back-to-back jets
 - Good (calibrated?) probe of the medium
- High multiplicity in A+A collisions
 - Individual jets difficult to reconstruct
 - Study jets via correlations of particles in space
 - both azimuth and pseudorapidity
Why study jets in heavy ion collisions?

- Hard parton scattering ⇒ back-to-back jets
 - Good (calibrated?) probe of the medium
- High multiplicity in A+A collisions
 - Individual jets difficult to reconstruct
 - Study jets via correlations of particles in space
- both azimuth and pseudorapidity
Introduction to the Ridge
Motivation – Jet and Ridge

- Long-range pseudorapidity ($\Delta \eta$) correlations observed by STAR in Au+Au at intermediate p_T
- Near side jet peak sits on plateau (Ridge)
- Significant contribution to the near-side yield in central Au+Au
Extent of Ridge in $\Delta \eta$

- Ridge yield approximately independent of $\Delta \eta$
- Jet increases with p_T^{trigger}
Method: Yield extraction

- *Ridge* previously observed to be independent in $\Delta \eta$ in Au+Au

- To determine relative contributions, find yields for near-side, take $\Delta \Phi$ projections in
 - $-0.75 < \Delta \eta < 0.75$ \textit{Jet + Ridge}
 - $0.75 < |\Delta \eta| < 1.75$ \textit{Ridge}

- \textit{Jet} = \textit{(Jet+Ridge)} – \textit{Ridge}*.75/1.0

- \textit{Ridge} = yield from $-1.75 < \Delta \eta < 1.75$ – \textit{Jet} yield

- Flow contributions to \textit{Jet} cancel
 - v_2 independent of η for $|\eta|<1$

Jet-like peak width in central Au+Au

- Jet peak symmetric in $\Delta\eta$ and $\Delta\phi$ for $p_T^{\text{trigger}} > 4$ GeV and comparable to d+Au
- Jet peak asymmetric in $\Delta\eta$ for $p_T^{\text{trigger}} < 4$ GeV and significantly broader than d+Au
Extent of Ridge in $\Delta \eta$

Au+Au 0-30% central

![Graph showing the extent of the ridge in $\Delta \eta$ for Au+Au 0-30% central collisions.](graph1)

Wenger QM08

![Graph comparing PHOBOS preliminary and PYTHIA v6.325 models for $1/N_{\text{trig}} dN_{\text{ch}} / d\Delta \eta$.](graph2)
Track merging

- Intrinsic limits in two-track resolution → loss of tracks at small $\Delta \phi$, $\Delta \eta$
 - Crossing of tracks, true merging of tracks
- Particle type dependent: affects reconstructed vertices (K^0_S, Λ, Ξ) more
- Dependent on p_T: affects lower p_T^{trigger}, p_T^{assoc} more
- With Ridge/Jet separation method affects Jet only
Track merging correction

- Calculate number of merged hits in a track pair from track geometry
- If the fraction of merged hits is greater than 10%, throw out the pair
- Do this for real and mixed event pairs
- Bin by helicity of trigger and associated and reflect the points from unaffected helicity bins to recover dip

\[h_{tr} = -1 \]
\[h_{as} = 1 \]
\[h_{tr} = 1 \]
\[h_{as} = -1 \]

genuine merging, most visible for low pt triggers

\[h_{tr} - \text{helicity of trigger} \]
\[h_{as} - \text{helicity of associated} \]

Bombara SQM07
Determination of yields and errors

- Background:
 \[B(1+2 v_2^{\text{trig}} v_2^{\text{assoc}} \cos(2\Delta\Phi)) \]

- Different fit methods for determination of B
 - Zero Yield At Minimum (ZYAM)
 - 1 point, 3 points
 - B as Free parameter (used as best guess)
 - \(v_2 \) error
 - \(v_2 \) measurements in Cu+Cu in progress
 - Upper bound for \(v_2 \) measured
 - \(v_2 \approx 10-15\% \) depending on \(p_T \), centrality
 - Estimate for lower bound, near 0
 - \(\Lambda, \bar{\Lambda}, K^0, \Xi^+, \Xi^- \ldots \) \(v_2 \): large statistical errors
 - Assume quark scaling of \(h v_2 \) in Cu+Cu

3.0 GeV<\(p_T^{\text{trig}} <6.0 \) GeV, 1.5 GeV<\(p_T^{\text{assoc}} < p_T^{\text{trig}} \)
h-h, 0-20% Cu+Cu \(\sqrt{s_{\text{NN}}} = 200 \) GeV
Caveats and assumptions

• **Jet**: track merging
 - Correction CPU intensive, in progress
 - 5% in central Au+Au for $p_T^{\text{trigger}} \sim 3$ GeV/c, $p_T^{\text{assoc}} \sim 1.5$ GeV/c for h-h
 - Increases for lower $p_T^{\text{trigger}}, p_T^{\text{assoc}}$, identified particles

• **Ridge**: ZYAM

• **Jet** and **Ridge**: assumption that Ridge is independent of $\Delta \eta$
 - If not, may overestimate Jet
Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV
Jet is like $p+p$, Ridge is like bulk

- Spectra of particles associated with Ridge similar to inclusive
- Spectra of particles associated with Jet harder
Measure hadron triggered fragmentation functions:
\[D^{h_1,h_2}(z_T) \]
\[z_T = \frac{p_T^{\text{assoc}}}{p_T^{\text{trigger}}} \]

- Jet+Ridge: \(D^{h_1,h_2}(z_T) \) different for d+Au, Au+Au
- Jet only: \(D^{h_1,h_2}(z_T) \) within errors for d+Au, Au+Au
Jet/Ridge w.r.t. reaction plane

Feng QM08

- Ridge yield decreases with ϕ_s. Smaller ridge yield at larger ϕ_s
- Jet yield approx. independent of ϕ_s and comparable with d+Au

Jet yield independent of ϕ_s, consistent with vacuum fragmentation after energy loss and lost energy deposited in ridge, if medium is “black” out-of-plane and more “gray” in-plane for surviving jets.
Ridge yield vs. $pt, trig$ in Au+Au

- Ridge yield persists to highest trigger $pt \Rightarrow$ correlated with jet production

Putschke
WWND08
• Applying this “2-component picture” to lower $p_{t,assoc}$ measurements:

$$z_{t,jet}(Au+Au) \sim z_{t,jet}(d+Au)$$

→ subtracting $p+p$ jet energy from $Au+Au$

• upper estimate of the energy deposit in the ridge ~ few GeV

• “Direct” measure of energy loss?

STAR, Phys. Rev. Lett. 95 (2005) 15230
3-particle correlations

- Ridge appears uniform event-by-event within STAR detector

\[
\Delta \eta_1 = A1-T \quad \Delta \eta_2 = A2-T
\]

\[
3 < p_T^{\text{trigger}} < 10 \quad 1 < p_T^{\text{assoc}} < 3 \quad |\Delta \phi| < 0.7
\]
3-particle correlations

- **Ridge** appears uniform event-by-event within STAR detector

\[\Delta \eta_1 = A1-T \]
\[\Delta \eta_2 = A2-T \]

\[3 < p_T^{\text{trigger}} < 10 \quad 1 < p_T^{\text{assoc}} < 3 \quad |\Delta \phi| < 0.7 \]

Radial flow + trigger bias

3-particle correlations

- **Ridge** appears uniform event-by-event within STAR detector

\[\Delta \eta_1 = \text{A1-T} \]
\[\Delta \eta_2 = \text{A2-T} \]

\[
\Delta \eta \leq |\Delta \phi| < 0.7
\]

\[3 < p_T^{\text{trigger}} < 10 \quad 1 < p_T^{\text{assoc}} < 3 \]

Long. flow picture
Au+Au \(\sqrt{s_{NN}} = 200 \text{ GeV} \) Summary

Ridge persists to high \(p_T^{\text{trigger}} \)

Ridge is softer than Jet, comparable to inclusive

Ridge contains a few GeV of energy

Jet almost independent of reaction plane; **Ridge** dominantly in plane

Fragmentation function with Ridge subtracted
similar in d+Au, Au+Au

Christine Nattrass (Yale), LLNL, April 14, 2009
The Jet

\[3 < p_{\text{trigger}} < 4 \text{ GeV} \]
\[p_{\text{assoc.}} > 2 \text{ GeV} \]

Au+Au 0-10% STAR preliminary

Jet

#entries

\[\Delta \phi \]
\[\Delta \eta \]

32
Particle type dependence
Identified trigger: Near-side Yield vs N_{part}

Jet yield - No trigger type dependence

3.0 GeV/c < p_T^{trigger} 6.0 GeV/c; 1.5 GeV/c < $p_T^{\text{associated}}$ < p_T^{trigger}

$\sqrt{s_{NN}}=200$ GeV, $|\Delta\eta|<0.7$

STAR preliminary

Data points at same N_{part} offset for visibility
Jet yields: 10% error added to V^0 and h triggers to account for track merging, 15% to Ξ triggers
Identified associated particles

- Associated baryons and mesons in \textit{Jet} similar

\[\sqrt{s_{NN}} = 200 \text{ GeV} \quad \text{Au+Au 0-10\% Cu+Cu: 0-54\%} \]
\[\sqrt{s_{NN}} = 62 \text{ GeV} \quad \text{Au+Au 0-80\% Cu+Cu: 0-60\%} \]

Fits assuming \[1/p_T \, dN/dp_T = A \, p_T \, \exp(-p_T/T) \]
Ridge composition

- Baryon/meson ratios in *Jet* in Cu+Cu and Au+Au similar to p+p for both strange and non-strange particles

J. Bielcikova (STAR), v:0707.3100 [nucl-ex]
C. Nattrass (STAR), arXiv:0804.4683/nucl-ex
Energy and System dependence
p_T^{trigger} dependence

- Pythia 8.1 describes trends in data up to a scaling factor
 - Gets energy dependence right → this is a pQCD effect
 - Stronger deviations at low p_T^{trigger}, as expected
• What can Pythia tell us?
 – Higher z_T (lower jet energy) in 62 GeV for same p_T^{trigger}

$p_{THatMin}$ = the parameter in Pythia for the minimum transverse momentum in the hard subprocess
Pythia comparisons

- What can Pythia tell us?
 - Higher z_T (lower jet energy) in 62 GeV for same p_T^{trigger}

p_{THatMin} = the parameter in Pythia for the minimum transverse momentum in the hard subprocess
\(p_T^{\text{associated}} \) dependence

- No system dependence
- Pythia 8.1 slightly harder than data
- Diverges slightly from Pythia 8.1 at lower \(p_T^{\text{associated}} \)

<table>
<thead>
<tr>
<th></th>
<th>(\sqrt{s_{NN}} = 62 \text{ GeV})</th>
<th>(\sqrt{s_{NN}} = 200 \text{ GeV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu+Cu</td>
<td>317 ± 26</td>
<td>445 ± 20</td>
</tr>
<tr>
<td>Au+Au</td>
<td>355 ± 21</td>
<td>478 ± 8</td>
</tr>
<tr>
<td>d+Au</td>
<td>469 ± 8</td>
<td>469 ± 8</td>
</tr>
<tr>
<td>Pythia</td>
<td>417 ± 9</td>
<td>491 ± 3</td>
</tr>
</tbody>
</table>

Inverse slope parameter

Statistical errors only

J. Bielcikova (STAR), arXiv:0806.2261/nucl-ex
C. Nattrass (STAR), arXiv:0804.4683/nucl-ex
\[N_{part} \text{ dependence} \]

- No system dependence
- Some deviations from Pythia 8.1 with increase in \(N_{part} \)
 - Incomplete Ridge subtraction?
 - Jet modification at low \(p_T \)?

\[\langle N_{part} \rangle \]

Graph:
- \(\text{Cu+Cu 62 GeV} \)
- \(\text{Au+Au 62 GeV} \)
- \(\text{d+Au 200 GeV} \)
- \(\text{Cu+Cu 200 GeV} \)
- \(\text{Au+Au 200 GeV} \)
- \(\text{Pythia 62 GeV}^{*2/3} \)
- \(\text{Pythia 200 GeV}^{*2/3} \)
Conclusions: Jet

- Pythia describes data well
 - Scaling factor needed but Pythia 8.1 is not as tuned as earlier versions
 - Energy dependence in Jet is pQCD effect
 - Trends for p_T^{trigger}, p_T^{assoc} dependence right
- Particle ratios similar to p+p
 - Jet production mechanism dominated by fragmentation
 - Separation of Jet and Ridge works
 - Effects of triggers which don't come from jets small
 - Pythia can be used to estimate z_T distributions, jet energy
The Ridge

Au+Au 0-10% STAR preliminary
3<p_{\text{trigger}}<4 \text{ GeV}
\p_{\text{assoc}} >2 \text{ GeV}

Ridge
Particle type dependence
Identified trigger: Near-side Yield vs N_{part}

3.0 GeV/c < p_T^{trigger} 6.0 GeV/c; 1.5 GeV/c < $p_T^{\text{associated}}$ < p

Ridge yield - No trigger type dependence

Au+Au $\sqrt{s_{NN}}$=200 GeV from nucl-ex/0701047
Cu+Cu $\sqrt{s_{NN}}$=200 GeV from SQM2007
Data points at same N_{part} offset for visibility

Christine Nattrass (Yale), LLNL, April 14, 2009
Ridge composition

- Baryon/meson ratios in Ridge similar to bulk for both strange and non-strange particles

J. Bielcikova (STAR), v:0707.3100 [nucl-ex]
C. Nattrass (STAR), arXiv:0804.4683/nucl-ex

Suarez, QM08
Energy and System dependence
- No system dependence at given N_{part}
Ridge vs N_{part}

- No system dependence at given N_{part}
- Ridge/Jet Ratio independent of collision energy
Conclusions: Ridge

- Extensive data on Ridge
 - Cu+Cu, Au+Au consistent at same \(N_{\text{part}} \)
 - Ridge/Jet ratio independent of energy
 - Persists to high \(p_T^{\text{trigger}} \)
 - Ridge looks like bulk
 - \(p_T^{\text{associated}} \) dependence, particle composition
- Jet agreement between different systems, with scaled Pythia
 - Simulations can be used to approximate \(z_T \) distribution for comparisons of data to models
 - More steeply falling jet spectrum in 62 GeV \(\rightarrow \) stronger bias towards unmodified/surface jets
 - Could explain smaller Ridge yield in 62 GeV
Comparisons to theories
Models

- **Radial flow+trigger bias**

 - Works for one set of kinematic cuts in central Au+Au at 200 GeV
 - Need more detailed comparisons (energy dependence)
 - Model needs some refinements (momentum conservation)

- **Plasma instability**

 Anisotropic plasma, P. Romatschke, PRC,75014901 (2007)

 - So far unable to make enough *Ridge* without Radial flow+trigger bias
Models

- **Longitudinal flow**
 - Problems due to $\Delta \eta$ width

- **Momentum kick**
 - Fits data well, including energy dependence

- **Recombination**
 Medium heating + recombination, Chiu & Hwa, PRC72, 034903
 - No quantitative comparisons
Conclusions

• Considerable evidence that Jet is dominantly produced by fragmentation
 – Can we use this information to learn more about the Ridge?

• Several models for the Ridge, few quantitative comparisons
 – Several depend on hydrodynamics
 – Need better calculations – more quantitative, more than central Au+Au

• Future:
 – More energy dependence (RHIC beam energy scan, LHC)
 – Jet reconstruction – more detailed studies of Ridge?
Backups
Ω triggered correlations

- Azimuthal correlations of comparable strengths seen with Λ (uds), Ξ (dss), and Ω (sss) triggers

- In Δη Λ-triggered correlations can be separated in jet and ridge
- Ξ-triggered Δφ correlations appear smeared in Δη direction (all ridge?)
Di-hadron triggered correlations

Di-jet measurements suggest that neither the widths in \(\Delta \eta \) and \(\Delta \phi \) (ridge/mach cone) are modified nor the yields are suppressed and comparable to d+Au

Caveat: Non-trivial bkg. subtraction

Surviving (di-jet) pairs at high \(p_t \) seem to favor conditions with small energy loss

\(\Rightarrow \) ridge correlated with energy loss (?)