humility

/nho'mi-lit/
noun
the quality of having a modest or low view of one's importance.
"he needs the humility to accept that their way may be better"
synonymer: modesty, humbleness, modestness, meekness, lack of pride, lack of vanity, diffidence, unassertiveness
"he needs the humility to accept that their way may be better"
I do not care about jets.

Paraphrased from Sevil Salur
I want to learn about the QGP.

First part paraphrased from Sevil Salur. The cartoon is my fault.
What should we measure?
What should we measure?

Jupiter and the Monkey

Jupiter promised a royal reward to the one whose offspring should be deemed the handsomest.

The monkey came with the rest, and presented a flat-nosed, hairless, ill-featured young monkey.

A general laugh saluted her on the presentation of her son.

She resolutely said; "He is at least in the eyes of me, his mother, the dearest, handsomest, and most beautiful of all."

Abbreviated
Jet measurement madlibs!

[Adjective] [noun] [observable] in [collision system]

Groomed
Unfolded
Event-engineered

Top quark
B-jet
Z-boson
D meson

Correlations
Di-jet asymmetries

Proton-lead
Ultra-central collisions

v_1, v_2, v_3, v_4...
Jet measurement madlibs!

[Adjective] [noun] [observable] in [collision system]

- Groomed
- Unfolded
- Event-engineered

Top quark B-jet Z-boson D meson

- Correlations
- Di-jet asymmetries
- $v_1, v_2, v_3, v_4...$

Proton-lead Ultra-central collisions

Groomed top quark di-jet asymmetries in ultracentral collisions
Jet measurement madlibs!

[Adjective] [noun] [observable] in [collision system]

Groomed
Unfolded
Event-engineered
Top quark
B-jet
Z-boson
D meson
Correlations
Di-jet asymmetries
ν_1, ν_2, ν_3, ν_4...
Proton-lead
Ultra-central collisions

Groomed top quark di-jet asymmetries in ultracentral collisions

Unfolded Z-boson correlations in proton-lead
Jet measurement madlibs!

[Adjective] [noun] [observable] in [collision system]

Groomed
Unfolded
Event-engineered

Top quark
B-jet
Z-boson
D meson

Correlations
Di-jet asymmetries
$v_1, v_2, v_3, v_4...$

Proton-lead
Ultra-central collisions

Groomed top quark di-jet asymmetries in ultracentral collisions

Unfolded Z-boson correlations in proton-lead

Groomed top jet v_4 in ultra-central collisions
Jet measurement madlibs!

[Adjective] [noun] [observable] in [collision system]

Groomed
Unfolded
Event-engineered

Top quark
B-jet
Z-boson
D meson

Correlations
Di-jet asymmetries
$v_1, v_2, v_3, v_4...$

Proton-lead
Ultra-central collisions

Groomed top quark di-jet asymmetries in ultracentral collisions

Unfolded Z-boson correlations in proton-lead

Groomed top jet v_4 in ultra-central collisions

Event-engineered groomed b-jet top quark di-jet asymmetries in ultra-central collisions
Error bars matter

- Simple measurements with small error bars may offer stronger constraints than better/more intuitive/more clever observables with large error bars
- Sometimes it’s surprising which measurements provide greatest constraints
- Examples:
 - Single particle spectra with small error bars constrain uncertainty on properties of the medium well Phys.Rev. C89 (2014) no.3, 034917
 - Relatively low Q, large x DIS and Drell-Yan data provide comparable constraints on Higgs production to LHC jet measurements PoS DIS2018 (2018) 024
- Correlations between uncertainties are also important. *Experiments should publish them.*
Do we really learn anything from this?*

*I really do like this measurement. It’s nothing personal. I ask the same thing about the measurements I’m working on.
Available data

RHIC: High-p_T hadron correlations 52%, reconstructed jets 3%

LHC: High-p_T hadron correlations 23%, reconstructed jets 40%

Analysis about 1 year old, some may disagree with classifications, but the gist holds
What should we measure?

- ALICE Preliminary
- Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV
- Anti-K_π, charged jets, $R = 0.2$
- $40 < p_T^{ch} < 60$ GeV/c

- ALICE Data
- Shape uncertainty
- Correlated uncertainty
- EWEL vacuum
- EWEL, Drell-Yan
- PYTHIA 11 quarks
- PYTHIA 11 gluons

- 0-12% Au+Au, PRC 80 (2009) 044912 + NSF Y, Y
- 0-20% Central c+Au, PRL 91 (2003) 072304
- p+p, PRL 91 (2003) 072304
- arXiv:1801.09131

- ALICE
- 0-10% Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV
- Anti-K_π, charged jets, $R = 0.5$
- $2 < p_T < 3$, < 0.5
- TT(20,50) - TT(8,9)
What should we measure?
What you don’t see matters

\[\xi = \ln(1/z) \]

\[z = p_T / E_{\text{jet}} \]

CMS Preliminary \(L_{\text{int}} = 150 \mu \text{b}^{-1} \)

- 2010, 0-30\%, Leading jet
- 2011, 0-10\%, Inclusive jet
- 2011, 10-30\%, Inclusive jet

JHEP10(2012)087

Christine Nattrass (UTK), Jet Tools May 2019
What you don’t see matters
What should we measure?
Some of my answers

• Everything!
 - Martin Spousta: But we can’t measure everything! We should focus!
 - Yen-jie Lee: We should measure things which are sensitive to different properties of the medium and which are human understandable.

• “Simple” measurements with small error bars

• Beware complicated measurements and black boxes.

• Have an open mind – your (my!) pet observable may not be the best
So the thing is, you should do it the way I do it because your way is wrong.
Discussion of analysis technique in a typical jet paper/talk

- Signal + background
- Jet finder
- Jet candidates
- Background subtraction
- Real jets
Beware black boxes!

THIS IS YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG PILE OF LINEAR ALGEBRA, THEN COLLECT THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG?

JUST STIR THE PILE UNTIL THEY START LOOKING RIGHT.

https://xkcd.com/1838/
Beware black boxes!

BACKGROUND SUBTRACTION ALGORITHM?

THIS IS YOUR

YUP! YOU POUR THE DATA INTO THIS BIG PILE

THEN COLLECT THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG?

JUST STIR THE PILE UNTIL THEY START LOOKING RIGHT.

https://xkcd.com/1838/
ATLAS

Background subtraction method:

- Iterative procedure
 - **Calorimeter jets**: Reconstruct jets with $R=0.2$. v_2 modulated $<\text{Bkgd}>$ estimated by energy in calorimeters excluding jets with at least one tower with $E_{\text{tower}} > <E_{\text{tower}}>$

 - **Track jets**: Use tracks with $p_T > 4$ GeV/c
 - Calorimeter jets from above with $E > 25$ GeV and track jets with $p_T > 10$ GeV/c used to estimate background again.

- Calorimeter tracks matching one track with $p_T > 7$ GeV/c or containing a high energy cluster $E > 7$ GeV are used for analysis down to $E_{\text{jet}} = 40$ GeV

→ **Background subtraction in use by experiments is not benign!**

Definition of Jets in a Large Background

• **Organizers:** M. Connors, G. Milhano, C. Nattrass, R. Reed, S. Salur
• **Spectra conveners:** R. Kunnawalkam Elayavalli, Y. Mehtar-Tani (R. Bertens)
• **Correlation conveners:** J. Noronha-Hostler, J. Huang
• **Substructure conveners:** Y. Lee, Y. Chien

Extensively discussed the interplay between experimental techniques and theoretical calculations with the aim of reaching an agreement* on the way forward for extracting jet measurements from large background events such as those in heavy ion collisions and high luminosity p-p or electron-ion collisions.

*Consensus on some points

62 Registered but due to various visa & travel complications: 45 + several BNL employees attended.
Recommendations

Include anything correlated in definition of jet

Provide enough details to make comparisons between data and models

Reconsider role of collinear safety

Discuss and put effort into the problem
The Lisbon Accord

- Lisbon Accord proposed that heavy ion analyses adopt RIVET in July 2014
- Workshop position paper will second this recommendation

https://www.aworldtotravel.com/things-lisbon-is-famous-for/
Problems with RIVET

- Not all heavy ion functionality exists
- Very few heavy ion analyses exist
- Only takes in HEPMC 2.0 input
- No way to deal with fluctuations
- No option to fit functions
- Cannot run in batch mode

RIVET 2.7

Use undergraduates!

Write a converter
Few heavy ion analyses in RIVET

Undergraduates!*

*And one beginning graduate student with no programming experience.

We acknowledge substantial support from the US NSF and the JETSCAPE Collaboration.
Early Engagement in Course-Based Research Increases Graduation Rates and Completion of Science, Engineering, and Mathematics Degrees

Stacia E. Rodenbusch, Paul R. Hernandez, Sarah L. Simmons, and Erin L. Dolan
Jennifer Knight, Monitoring Editor:
Published Online: 13 Oct 2017 | https://doi.org/10.1187/cbe.15-03-0117

Abstract

National efforts to transform undergraduate biology education call for research experiences to be an integral component of learning for all students. Course-based undergraduate research experiences, or CUREs, have been championed for engaging students in research at a scale that is not possible through apprenticeships in faculty research laboratories. Yet there are few if any studies that examine the long-term effects of participating in CUREs on desired student outcomes, such as graduating from college and completing a science, technology, engineering, and mathematics (STEM) major. One CURE program, the Freshman Research Initiative (FRI), has engaged thousands of first-year undergraduates over the past decade. Using propensity score-matching to control for student-level differences, we tested the effect of participating in FRI on students’ probability of graduating with a STEM degree, probability of graduating within 6 yr, and grade point average (GPA) at graduation. Students who completed all three semesters of FRI were significantly more likely than their non-FRI peers to earn a STEM degree and graduate within 6 yr. FRI had no significant effect on students’ GPAs at graduation. The effects were similar for diverse students. These results provide the most robust and best-controlled evidence to date to support calls for early involvement of undergraduates in research.
Phys 494 – Course-based Undergraduate Research Experience in Relativistic Heavy Ion Physics

Instructor:
Dr. Christine Nattrass
Office: SERF 609
Phone: 974-6211
Email: christine.nattrass@utk.edu
Office hours: TBA

Teaching assistant: N/A

Class time & Location: TR 12:40-1:55 SERF 210

Course Description:
This course will incorporate undergraduates into a research project in high energy nuclear physics in a course setting. Each student will be responsible for implementing a heavy ion analysis in the program RIVET so that it can be used by the JETSCAPE collaboration to make comparisons between Monte Carlo models and data. Each student’s project will be incorporated into a public software repository so that it is available to the field and, if possible, it will be validated by the relevant experiment and incorporated into the official RIVET software.
Analyses (almost) implemented in UTK copy of RIVET

https://github.com/cnattras/rivet-hi

Need to be finalized! Hold me to it!
Problem: The background fluctuates even in Monte Carlo!

JHEP 03 (2012) 053

\[\mu_{\text{LHS}} = 0.0, \sigma_{\text{LHS}} = 9.7, \alpha = 11.0 \]

\[\sigma = 10.1 \]

\[\mu_{\text{LHS}} = -0.9, \sigma_{\text{LHS}} = 8.0, \alpha = 8.6 \]

\[f^\gamma: a_p = 144.3, a_b = 1.4 \text{ c/GeV} \]

\[\text{Pb-Pb: 0-10\%} \]

\[R = 0.4 \]

\[p_T^{\text{min}} = 0.15 \text{ GeV/c} \]
How to address fluctuations?

- Tag final state hadrons as part of signal or background and only put these into jet finder
 - May work OK but conceptually suboptimal

- Compare to data which have not been corrected for fluctuations in the background
 - Technically feasible but jet measurements would not be physically meaningful, would be sensitive to our understanding of soft physics

- Unfold Monte Carlo results
 - Treating MC just like data
 - Unfolding is highly non-trivial
Conclusions

- We need to be humble
- Focus on reduced uncertainties
- Publish correlations between uncertainties!
- Treat MC like data
 - Implement analyses in RIVET!
 - Warning: fluctuations in full MC
- Beware black boxes
humility

noun

the quality of having a modest or low view of one's importance.
"he needs the humility to accept that their way may be better"

synonymer: modesty, humbleness, modestness, meekness, lack of pride, lack of vanity, diffidence, unassertiveness
"he needs the humility to accept that their way may be better"
Progress

WARNING: Very small sample size, highly biased results, need to coordinate with Przemyslaw, Jochen, & Jan Fiete to ensure code can eventually be committed. Fluctuations in combinatorial background not subtracted.

Undergraduates *Mariah McCreary (UTK)*, James Neuhaus (UTK), Jerrica Wilson (UTK), *Ricardo Santos (Berea)*; Graduate student Austin Schmier (UTK); Post doc Redmer Bertens (UTK)

Mariah and Ricardo implementing ALICE analyses, James and Redmer providing key support. Funding from JETSCAPE, Berea, and the UTK physics department.
Summary of existing heavy ion analyses

- **STAR**
 - 6 analyses but none of them instantiated by STAR, some validated but none heavy ion
 - I am an “author” on one and I have no recollection of this whatsoever so I’m not sure how official they are
 - 2 implemented in my class this semester, 2 in progress

- **PHENIX**
 - 4 implemented in my class this semester

- **ALICE**
 - 10 pp analyses
 - 3 heavy ion analyses in RIVET-HI (multiplicity, charged spectra, dihadron correlations)
 - 2 jet spectra analyses and one jet v2 analysis in UTK copy of RIVET-HI, still require management of fluctuations

- **ATLAS**
 - 0
 - 1 jet spectra analysis in UTK copy of RIVET-HI, one in jet spectra analysis and one jet v2 analysis in progress, still require management of fluctuations

- **CMS**
 - 0
 - 1 jet fragmentation function analysis in UTK copy of RIVET-HI, jet fragmentation function analysis and jet spectra analysis in progress, still require management of fluctuations

- **LHCb**
 - 0