Measurements of jets in heavy ion collisions

Christine Nattrass University of Tennessee, Knoxville Largely based on Connors, Nattrass, Reed, & Salur arxiv:1705.01974

What have we learned? How do we move forward?

Partonic energy loss

https://onkeymonkey.files.wordpress.com/2013/03/5387946 460s v1.jpeg

Nuclear modification factor R_{AA} RHIC

- Electromagnetic probes consistent with no modification medium is transparent to them
- Strong probes significant suppression medium is opaque to them - even heavy quarks!

- Jet R_{AA} also demonstrates suppression
- Similar suppression of heavy quark jets?

Jet R_{AA}

- Jet R_{AA} also demonstrates suppression
- Similar suppression of heavy quark jets?

Dijet asymmetry

[Phys.Rev.C84:024906,2011, Phys. Lett. B 712 (2012) 176, Phys.Rev.Lett.105:252303,2010, Phys. Rev. Lett. 119, 062301 (2017)]

[Phys.Rev.C84:024906,2011, Phys. Lett. B 712 (2012) 176, Phys.Rev.Lett.105:252303,2010, Phys. Rev. Lett. 119, 062301 (2017)]

Christine Nattrass (UTK), High-p_T Physics in the RHIC/LHC Era 2017

[JHEP 09 (2015) 170,

Phys. Rev. C 96, 024905 (2017)]

Broadening and Softening https://i.pining.com/736x/28/9b/9e/289b9e8e63c56fe8496c0aaafee58183--funny-fat-animals-scout-cookies.jpg

Fragmentations from γ-hadron correlations

Slight suppression at high z

Modified fragmentation

Fragmentation functions with jets

Modified fragmentation

Fragmentation functions with jets

Christine Nattrass (UTK), High- p_{τ} Physics in the RHIC/LHC Era 2017

Jet-hadron correlations

Jet-hadron correlations vs reaction plane

- No modification of constituents relative to reaction plane
 - → Jet-by-jet fluctuations more important than path length [PLB 735 157(2014)]
 - Also needed to explain high $p_T v_2$ [PRL 116 252301 (2016)]

Jet structure

https://i.pinimg.com/736x/a7/42/bc/a742bc8c2dcb0ad8bb47576a7f10c59a images-of-animals-x-rays.jpg

Jet mass

- Quenching models (JEWEL, Q-PYTHIA) show a larger mass than pp-like PYTHIA jets
- Pb-Pb measurement can discriminate among these predictions

Splitting function

 Qualitative confirmation of our model for partonic energy loss

- Qualitative confirmation of our model for partonic energy loss
- Reasonable constraints on \hat{q}

- Qualitative confirmation of our model for partonic energy loss
- Reasonable constraints on \hat{q}
 - Using mostly hadron spectra

- Qualitative confirmation of our model for partonic energy loss
- Reasonable constraints on \hat{q}
 - Using mostly hadron spectra
- We have not gotten many quantitative constraints out of other observables.

- Qualitative confirmation of our model for partonic energy loss
- Reasonable constraints on \hat{q}
 - Using mostly hadron spectra
- We have not gotten many quantitative constraints out of other observables.
- We don't *truly* know if they are actually sensitive to the physics we want to measure.

- Qualitative confirmation of our model for partonic energy loss
- Reasonable constraints on \hat{q}
 - Using mostly hadron spectra
- We have not gotten many quantitative constraints out of other observables.
- We don't *truly* know if they are actually sensitive to the physics we want to measure.
- Theoretical calculations sensitive to things we might not have under control.

What you see depends on where you look

What you see depends on where you look

ATLAS

Background subtraction method:

- Iterative procedure
 - **Calorimeter jets:** Reconstruct jets with R=0.2. v_2 modulated <Bkgd> estimated by energy in calorimeters excluding jets with at least one tower with $E_{tower} > <E_{tower} >$

Track jets: Use tracks with $p_T > 4 \text{ GeV/c}$

- Calorimeter jets from above with E>25 GeV and track jets with p_T >10 GeV/c used to estimate background again.
- Calorimeter tracks matching one track with p_T>7 GeV/c or containing a high energy cluster E >7 GeV are used for analysis down to E_{jet} = 20 GeV

Phys. Lett. B 719 (2013) 220-241

What is a jet?

What is a jet? $p+p \rightarrow dijet$

What is a jet? $p+p \rightarrow dijet$

"I know it when I see it" US Supreme Court Justice Potter Stewart, Jacobellis v. Ohio

Christine Nattrass (UTK), High- p_{τ} Physics in the RHIC/LHC Era 2017

Jet finding in pp collisions

- Jet finder: groups final state particles into jet candidates
 - Anti-k_T algorithm
 JHEP 0804 (2008) 063 [arXiv:0802.118
 9]
- Depends on hadronization
 - Ideally
 - Infrared safe
 - Colinear safe

Snowmass Accord: Theoretical calculations and experimental measurements should use the same jet finding algorithm. Otherwise they will not be comparable.

A jet is what a jet finder finds.

Jet finding in AA collisions

- Jet finder: groups final state particles into jet candidates
 - Anti-k_T algorithm
 JHEP 0804 (2008) 063 [arXiv:0802.1189]
- Combinatorial jet candidates
- Energy smearing from background
- Large, fluctuating, correlated background
- Sensitive to methods to suppress combinatorial jets and correct energy
- Focus on narrow/high energy jets

Jet finding in AA collisions

- Jet finder: groups final state particles into jet candidates
 - Anti-k_T algorithm
 JHEP 0804 (2008) 063 [arXiv:0802.1189]
- Combinatorial jet candidates
- Energy smearing from background
- Large, fluctuating, correlated background
- Sensitive to methods to suppress combinatorial jets and correct energy
- Focus on narrow/high energy jets

We need an accord on how to treat background

The invisible gorilla

copyright (c) 1999 Daniel J. Simons. All rights reserved.

Bias & background

- Experimental background subtraction methods: complex, make assumptions, apply biases
- Survivor bias: Modified jets probably look more like the medium
- Quark/Gluon bias:
 - Quark jets are narrower, have fewer tracks, fragment harder [Z Phys C 68, 179-201 (1995), Z Phys C 70, 179-196 (1996),]
 - Gluon jets reconstructed with k_T algorithm have more particles than jets reconstructed with anti-k_T algorithm [Phys. Rev. D 45, 1448 (1992)]
 - Gluon jets fragment into more baryons [EPJC 8, 241-254, 1998]
- Fragmentation bias: Experimental measurements explicitly select jets with hard fragments

Jupiter and the Monkey

Jupiter promised a royal reward to the one whose offspring should be deemed the handsomest.

The monkey came with the rest, and presented a flat-nosed, hairless, ill-featured young monkey.

A general laugh saluted her on the presentation of her son.

She resolutely said; "He is at least in the eyes of me, his mother, the dearest, handsomest, and most beautiful of all."

http://aesopsfables.org/F9_Jupiter-and-the-Monkey.html Abbreviated

Christine Nattrass (UTK), High-p_T Physics in the RHIC/LHC Era 2017

Learning about the QGP from jets

 The JETSCAPE collaboration is an NSF funded multi-institutional effort to design the next generation of event generators to simulate the physics of ultra-relativistic heavy-ion collisions. It involves teams of theoretical and experimental physicists, computer scientists, and statisticians from nine institutions.

• Understand bias - it's a tool, not a dirty word

- Understand bias it's a tool, not a dirty word
- Make quantitative comparisons to theory
 - Report correlation between uncertainties
 - Report spectra without T_{AA} !
 - Report point-to-point correlations

- Understand bias it's a tool, not a dirty word
- Make quantitative comparisons to theory
 - Report correlation between uncertainties
 - Report spectra without T_{AA} !
 - Report point-to-point correlations

- Understand bias it's a tool, not a dirty word
- Make quantitative comparisons to theory
 - Report correlation between uncertainties
 - Report spectra without T_{AA} !
 - Report point-to-point correlations
- Make more differential measurements

- Understand bias it's a tool, not a dirty word
- Make quantitative comparisons to theory
 - Report correlation between uncertainties
 - Report spectra without T_{AA} !
 - Report point-to-point correlations
- Make more differential measurements
- We need an accord on how to treat background
 - Experimental cuts matter and are unavoidable
 - Clear definition and implementation of background, biases (via Rivet?)
 - Summer 2018?

Connors, Nattrass, Reed, & Salur arxiv:1705.01974

Thank you

Modified fragmentation

- Enhancement at low z
- No modification/enhancement at high z?

Au+Au di-jets more imbalanced than p+p for p_{Tcut}>2 GeV/c Au+Au A_J ~ p+p A_J for matched di-jets (R=0.4)

Jet-hadron correlations

- Jets are broader, constituents are softer
- Also seen in:
 - Di-hadron correlations [Lots of papers]
 - Jet shapes [arXiv:1708.09429, arXiv:1512.07882, arXiv:1704.03046]
 - Dijet asymmetry with soft constituents [PRL119 (2017) 62301]

Blind men and the elephant

V1 estimates

What have we learned?

https://i.pinimg.com/736x/b1/06/40/b10640a9668443428d0228a7dc4e5a92--see-no-evil-evil-cats.jpg

O I T

77

Hear no evil, see no evil, speak no evil

Wikipedia:

- There are various meanings ascribed to the monkeys and the proverb including associations with being of good mind, speech and action.
- In the Western world the phrase is often used to refer to those who deal with impropriety by turning a blind eye.

Partonic energy loss

http://i.huffpost.com/gen/1111048/images/o-TIRED-KITTEN-facebook.jpg
Broadening and Softening

Jet structure

 $\int f^{2}(t)dt = \frac{1}{2\pi} \int |F(j\omega)|^{2} d\omega = \frac{1}{\pi} \int |F(j\omega)|^{2} d\omega$ $\int_{\infty}^{\infty} f^{2}(t)dt = \frac{1}{2\pi} \int_{\infty}^{\infty} f(t)dt \int_{\infty}^{\infty} F(t)dt$ $\int f^{2}(t) dt = \frac{1}{2\pi} \int F(j\omega) d\omega$ What have we learned?