Measurements of jets in ALICE Christine Nattrass University of Tennessee, Knoxville for the ALICE collaboration

Jet formation in a vacuum

Image from http://www.gk-eichtheorien.physik.uni-mainz.de/Dateien/Zeppenfeld-3.pdf

Image from http://www.gk-eichtheorien.physik.uni-mainz.de/Dateien/Zeppenfeld-3.pdf

Jet finding in pp collisions

- Jet finder: groups final state particles into jet candidates
 - Anti-k_T algorithm
 JHEP 0804 (2008) 063 [arXiv:0802.1189]
- Depends on hadronization
- Ideally

Jet 1

Jet 2

- Infrared safe
- Colinear safe

Hard scattering

Hadronization

Jet finding in AA collisions

- No unambiguous definition of a jet
- Jet finder: groups final state particles into jet candidates
 - Anti-k_T algorithm
 JHEP 0804 (2008) 063 [arXiv:0802.1189]
- Combinatorial jet candidates
- Sensitive to methods to suppress combinatorial jets

Jets in ALICE

•EMCal Pb-scintillator sampling

- $|\eta| < 0.7, 1.4 < \phi < \pi$
- tower $\Delta \eta \sim 0.014$, $\Delta \phi \sim 0.014$

Remove contamination from Charged particles Neutral constituents

Jet reconstruction

- Input to the jet finder
 - Assumed to be massless
 - Charged tracks (ITS+TPC) with $p_{\rm T} > 150 \text{ MeV}/c$
 - Cluster energies $E_{cluster} > 300 \text{ MeV}$
 - EMCal cluster energies corrected for charged particle contamination with

$$f = 100\%$$

$$E_{cluster}^{cor} = E_{cluster}^{orig} - f \Sigma p^{Matched}, E_{cluster}^{cor} \ge 0$$

- ALICE measures
 - Full Jets (tracks + clusters) corrected to include n, K_{L}^{0} ...
 - Charged jets (tracks only) corrected to charged particle energy only

EMCal & DCal

$\Delta \eta = 1.4, \Delta \phi = 107^{\circ}$

Installed in Fall 2014 $\Delta\eta=1.4, \Delta\phi=60^{\circ}$

- Lead-scintillator sampling calorimeter
- 13 k towers
- Each tower $\Delta \eta X \Delta \phi = 0.014 \times 0.014$
- $\sigma(E)/E=0.12/\sqrt{E}+0.02$

 $\Delta\eta=1.4, \Delta\phi=107^{\circ}$

Installed in Fall 2014 $\Delta\eta=1.4, \Delta\phi=60^{\circ}$

EMCal & DCal

- Lead-scintillator sampling calorimeter
- 13 k towers
- Each tower $\Delta \eta \ge \Delta \phi = 0.014 \ge 0.014$
- $\sigma(E)/E=0.12/\sqrt{E}+0.02$

Measurements of jets

- In pp collisions
 - Test QCD
- In pPb collisions
 - Cold nuclear matter effects
- In Pb-Pb collisions
 - Hot QCD effects

Measurements of jets

- In pp collisions
 - Test QCD
 - Consistent with QCD
- In pPb collisions
 - Cold nuclear matter effects
 - No significant effects for jets
- In Pb-Pb collisions
 - Hot QCD effects
 - Significant medium effects

pp collisions

ALICE

Full jet cross-section in pp $\sqrt{s} = 2.76$ TeV, R = 0.2, 0.4 Inclusive

for both R = 0.2 and 0.4

Charged jet cross-section pp $\stackrel{\bullet}{\rightarrow}$ $\stackrel{\bullet}{\leftarrow}$ Charged $\sqrt{s} = 7$ TeV Inclusive

• Data agree well with: PYTHIA Perugia 2011 & HERWIG

Data and NLO+ hadronization calculations agree well

Measurements of jets

- In pp collisions
 - Test QCD
 - Consistent with QCD
- In pPb collisions
 - Cold nuclear matter effects
- In Pb-Pb collisions
 - Hot QCD effects

pPb collisions

Charged jet cross-section in pPb $\sqrt{s_{NN}} = 5.02$ TeV, R = 0.2, 0.4 Inclusive

- Comparing to pp simulations, no differences observed within error bars.
- Collimation increases with jet p_T as in pp.
- No significant energy dependence or change with collision species is observed.

- $R_{_{DPb}}$ consistent with unity
- No cold nuclear matter effects observed for jets

Measurements of jets

- In pp collisions
 - Test QCD
 - Consistent with QCD
- In pPb collisions
 - Cold nuclear matter effects
 - No significant effects for jets
- In Pb-Pb collisions
 - Hot QCD effects

Pb-Pb collisions

Background fluctuations Full Jets in Pb-Pb $\sqrt{s_{_{NN}}} = 2.76 \text{ TeV}$

 δp_T is not corrected for detector effects – Experiment specific •Fluctuations in the background determined via δp_{T}

- Random cones (RC)
- Depends on
 - Constituent cut R
 - Centrality
 - Event plane
 - Detector

$$\delta p_T = p_T^{rec} - \rho \pi R^2$$

 δp_T is used to construct unfolding response matrix

Leading track jet bias $\sqrt{s_{_{\rm NN}}} = 2.76$ TeV Pb-Pb, R=0.2

Combinatorial "jets"

•Combinatorial jets a challenge in HI collisions

- Require leading track $p_T > 5 \text{ GeV/c}$
- Suppresses combinatorial "jets"
- Biases fragmentation

Measured spectra:

$$p_{T,jet}^{unc} = p_{T,jet}^{rec} - \rho A$$

Where $p_{T,jet}^{rec}, A$
comes from FastJet antik_T algorithm

Christine Nattrass, Epiphany 2016

ERF-44496

Full jet cross-section in Pb-Pb $\sqrt{s_{_{NN}}} = 2.76$ TeV, R = 0.2 Inclusive

Full jet
$$R_{AA}$$

 $\sqrt{s_{NN}} = 2.76$ TeV, $R = 0.2$ Inclusive

Full jet RAA in central Pb-Pb collisions,

- Different jet reconstruction techniques (ATLAS: Calo Jets, CMS: Particle-Flow Jets, ALICE: Ch+En Jets) used by the different experiments
- R=0.2: ATLAS scaled from R=0.4 to R=0.2

ALI-DER-92552

• Both models agree well with data

ALICE

Measurements of jets

- In pp collisions
 - Test QCD
 - Consistent with QCD
- In pPb collisions
 - Cold nuclear matter effects
 - No significant effects for jets
- In Pb-Pb collisions
 - Hot QCD effects
 - Significant medium effects

Conclusions

- In pp collisions
 - Data agree with NLO pQCD + hadronization
- In pPb collisions
 - Data agree with NLO pQCD
 - Consistent with no CNM effect
- In Pb-Pb collisions
 - Strong jet suppression

Backup

Christine Nattrass, Epiphany 2016

ALICE

Jet Reconstruction

•Jets reconstructed using FastJet package

- R = 0.2 0.4
- Anti- $k_{\rm T}$ Used for signal determination
- $k_{\rm T}$ Used for background determination
- •Correct for detector effects using unfolding
 - Momentum resolution
 - Energy resolution
 - Track Matching

M. Cacciari, G. P. Salam, G.Soyez, JHEP 0804:063,2008

Full Jet Selection Requirements

- •EMCal fiducial acceptance cut
 - *R* away from EMCal boundaries
 - *R*=0.2:

6

- $|\eta_{jet}| < 0.5$
- $1.60 < \phi_{jet} < 2.94$

•Jets with leading track $p_T > 100 \text{ GeV}/c$ are rejected due to limitations of tracking beyond 100 GeV/c

Jets in Heavy Ion Collisions Experimental Challenges

- Need to remove underlying event (UE) contribution
 - $p_{T,Jet} = p_{T,Jet}^{rec} \rho A + B_{\sigma}$
 - A = Jet area, $\rho =$ median UE momentum density
 - $p_{T, Jet} = Jet p_T$ from jet finder
 - We can only remove the average background contribution
- $\bullet B_{\sigma}$ from UE fluctuations
- Combinatorial (fake) jets can be reconstructed from UE
- Detector effect corrections depend on fragmentation
- Both background and detector effects are corrected in unfolding
 - Corrects spectra for the B_{σ} term
 - Quantified in Response Matrix (RM)

HI Background Determination Charged Jets $\sqrt{s_{_{NN}}} = 2.76 \text{ TeV}$

- • ρ_{ch} : median of $P_{T,kTjet}^{ch} / A_{kTjet}$
 - 2 leading jets removed
 - May be sensitive to jet fragments outside k_T jet cone
 - Determined event-by-event
- $\bullet \rho_{ch}$ is not corrected for detector effects or missing energy
- •Subtracted from signal jets on a jetby-jet basis

JHEP 1203:053, 2012 (arxiv:1201.2423)

 $p_{T,iet}^{ch,unc} = p_{T,iet}^{rec} - \rho_{ch}A$

HI Background Determination Full Jets $\sqrt{s_{_{NN}}} = 2.76 \text{ TeV}$

Centrality dependent scale factor accounts for neutral energy

 $\rho_{\text{scaled}} = \rho_{\text{ch}} \times \rho_{\text{EMC}}$

Response matrix RM_{det}

•RM_{det} quantifies detector response to jets

- "Particle" level jets defined by jet finder on MC particles
- Pythia with Pb-Pb tracking efficiency
- "Detector" level jets defined by jet finder after event reconstruction through GEANT
- Particle level jets are geometrically matched to detector level jets
- Matrix has a dependence on spectral shape and fragmentation
- •Jet-finding efficiency is probability of a matched particle level jet

Christine Nattrass, Epiphany 2016

ALICE

Response Matrix Construction

Jet Resolution

Charged

•Jet resolution

ALICE

Full

- Dominated by background fluctuations at low momentum
- Dominated by detector effects at high momentum