How to make yalid consparisons between dattel ancl suodels

$k \mid \# 463301545$

How to make yalid consparisons between dattel ancl suodels

How to make valid consparisons between

Acknowledgements

Antonio Da Silva

Patrick Steffanic

Tanner Mengel

Charles Hughes

1. Standard paradigm of background

Signal vs Background:

The standard paradigm

Background

Signal

Signal vs Background:

The standard paradigm

Background

Combinatorial jets

Signal

Signal vs Background:

The standard paradigm

Background

Combinatorial jets
= "fake" jets

Signal

Signal vs Background:

The standard paradigm

Signal

*Some gray areas
Christine Nattrass (UTK), ECT* 2024

A jet is what a jet finder finds.

2. Models

TennGen background generator

Event properties

- Even event planes fixed at $\Psi=0$
- Odd planes at random φ
- Multiplies from ALICE PRC88 (2013) 044910

No jets! No resonances Emulates hydro correlations

Track properties

\rightarrow Random p_{T}

Mix TennGen with PYTHIA

- Merge PYTHIA pp collisions into TennGen heavy ion background
- Find charged anti- k_{T} jets in merged event and geometrically match them back to PYTHIA jets
- Use matched PYTHIA jet momentum as ground truth

$+$

3. Background and signal overlap

What happens to jet properties when you cut background?

What happens to jet properties when you cut background?

Remaining background jets look like signal

Silhouette Values

- Average distance between a jet candidate and other jet candidates in its cluster (signal or background) $a_{i}=\left\langle d_{i, j}\right\rangle_{j \neq i}$
- Average distance between jet candidate and jet candidates in the other cluster $b_{i}=\left\langle d_{i, j}\right\rangle$
- Silhouette value

$$
s_{i}=\frac{b_{i}-a_{i}}{\max \left[b_{i}, a_{i}\right]}
$$

Indistinguishable from other clusters

Looks more like its own cluster

Silhouette values
 Example from Wikipedia

Silhouette scores from three types of animals rendered by Orange data mining suite.

Christine Nattrass (UTK), ECT* 2024

Silhouette Values

- Define a distance between two jet candidates to determine how similar they are

What happens to jet properties when you cut background?

Yes, you can cut background, but it comes at a cost. Background jets which look like signall remain.

What's left is biased towards quark-like jets

What's left is biased towards quark-like jets

Survivor bias

First use of the term for jets in heavy ion collisions?
Rev. Mod. Phys. 90, 025005 (2018)

- WWII Example: holes planes returning indicate where it's safer to get hit - We're looking at the jets which remain

4. Machine learning only teaches you what you already know!

Observation - ML does better at background

ALICE Collaboration, PLB 849 (2024) 138412
Christine Nattrass (UTK), ECT* 2024

Observation - ML does better at background

Width of

 determines momentum resolution of method.

Applied to data in

$$
p_{T}^{\text {Corr. }}=p_{T}^{\text {raw. }}-\rho A_{j}
$$

A better method?

- Random cone:

$$
\begin{aligned}
& p_{T}^{\text {corr }}=p_{T}^{\text {raw }}-\rho_{A} A \\
& \sigma_{\text {total }}=\sqrt{N \sigma_{p_{T}}^{2}+\left(N+2 N^{2} \sum_{n} v_{n}^{2}\right) \mu_{p_{T}}^{2}}
\end{aligned}
$$

Tannenbaum, PLB(498),1-2,Pg.29-34(2001)

- Multiplicity method:

$$
\begin{aligned}
& p_{T}^{\text {corr }}=p_{T}^{\text {raw }}-\rho_{N}\left(N_{\text {tot }}-N_{\text {sig }}\right) \\
& \sigma_{\text {total }}=\sqrt{N \sigma_{p_{T}}^{2}}
\end{aligned}
$$

Also confirmed in
PRC 106, 044915 (2022)

Trimming the network
Neuron activation probability

Follow up to
PRC.108.L021901(2023)6
Arxiv pending

Information flows forward from layer to layer Nodes are connected by weights

Algorithm Performance

Symbolic regression

Follow up to
PRC.108.L021901(2023)6

- Analytical approximation
- Trained on all input jet features with exponential, trigonometric, and arithmetic operations.
- The best result was a linear combination.

Jet multiplicity
$p_{T}^{\text {corr }}=p_{T}^{\text {raw }}-C_{1} \cdot\left(\mathcal{N}-C_{2}\right)$
Learned optimization constants.

Arxiv pending

Score

Neural network \approx Multiplicity method

- Constants learned by PySR are approximately the terms used in multiplicity background subtraction method.

Interpretable ML

1. Method must be equivalently applicable to data and simulation.
2. Predictions must be understood outside the range of training set.
3. Systematic uncertainties can be assessed for predictions.
4. Learned relationships can be directly observed.

Machine Learning

Interpretable Machine Learning

Interpretable ML

1. Method must be equivalently applicable to data and simulation.
2. Predictions must be understood outside the range of training set.
3. Systematic uncertainties can be assessed for predictions.
4. Learned relationships can be directly observed.

Tanner Mengel - Skype $\cdot 1 \mathrm{~m}$
That guy is Drake. He's a really famous rapper and that meme is from one of his music videos!

Machine Learning

Interpretable Machine Learning

5. How should you compare to models?

WE DON'T WANT TO REINVENT THE WHEEL, SO EVERY DAY WE GOOGLE IMAGE SEARCH "WHEEL", AND WHATEVER OBJECT COMES UP, THAT'S WHAT WE ATTACH TO OUR VEHICLES. SURE, EXTERNAL DEPENDENCIES CARRY RISKS, BUT SO FAR THEY'VE ALL BEEN PRETTY GOOD WHEELS.

Analysis steps

Christine Nattrass (UTK), ECT* 2024

Analysis steps: Full Monte Carlo

Christine Nattrass (UTK), ECT* 2024

Closure

- Methods
- Use δp_{T} method to measure width of fluctuations with varying numbers of leading jets (LJ) discarded
- Embed PYTHIA event into heavy ion event
- Only embedding leads to full closure in Monte Carlo

ATLAS

Background subtraction method:

- Iterative procedure
- Calorimeter jets: Reconstruct jets with $R=0.2$. V_{2} modulated <Bkgd> estimated by energy in calorimeters excluding jets with at least one tower with

$$
\mathrm{E}_{\text {tower }}><\mathrm{E}_{\text {tower }}>
$$

Track jets: Use tracks with $p_{T}>4 \mathrm{GeV} / \mathrm{c}$

- Calorimeter jets from above with $\mathrm{E}>25 \mathrm{GeV}$ and track jets with $p_{T}>10 \mathrm{GeV} / \mathrm{c}$ used to estimate background again.
- Calorimeter tracks matching one track with $\mathrm{p}_{\mathrm{T}}>7 \mathrm{GeV} / \mathrm{c}$ or containing a high energy cluster $\mathrm{E}>7 \mathrm{GeV}$ are used for analysis down to $\mathrm{E}_{\text {jet }}=20 \mathrm{GeV}$
Phys. Lett. B 719 (2013) 220-241

Snowmass Accord: Apply the same algorithm to data and your model. Then the measurement and the calculation are the same.

Rivet: Apply the same algorithm to data and your model. Then the measurement and the calculation are the same.

This is also what people have learned in the soft sector in heavy ion collisions.

The Lisbon Accord

How should you compare to models?

p+p dijet

What is a jet?

I know it when I see it"
US Supreme Court Justice Potter Stewart, Jacobellis v. Ohio

Definition of Jets in a Large Background July 25-27, 2018

Include anything correlated in definition of jet

Reconsider role of collinear safety

Discuss and put effort into the problem

Backup

Random cones

η

Random cones

ALICE Data: JHEP 03 (2012) 053

Width vs multiplicity

Width vs multiplicity

Correlations between event planes

Subjet z

- Cluster jets with anti- k_{T} with resolution parameter R
- Recluster constituents with anti- k_{T} with resolution parameter r
- Some discriminating power between quark-like and gluon-like jets
- Strained at low momentum, small R

Construct a response matrix in Monte Carlo

Designing a better method

- Jet multiplicity largest mutual information w/jet momentum .
- Background fluctuations are well described by multiplicity fluctuations.

JHEP 03 (2012) 053 , Phys. Rev. C 106, 044915 (2022), Physics Letters B 498, 29 (2001).

Definition of Jets in a Large Background July 25-27, 2019

- Organizers: M. Connors, G. Milhano, C. Nattrass, R. Reed, S. Salur
- Spectra conveners: R. Kunnawalkam Elayavalli, Y. Mehtar-Tani (R. Bertens)
- Correlation conveners: J. Noronha-Hostler, J. Huang
- Substructure conveners: Y. Lee, Y. Chien

Extensively discussed the interplay between experimental techniques and theoretical calculations with the aim of reaching an agreement* on the way forward for extracting jet measurements from large background events such as those in heavy ion collisions and high luminosity p-p or electron-ion collisions.
*Consensus on some points
62 Registered but due to various visa \& travel complications: $45+$ several BNL employees attended.
Christine Nattrass (UTK), ECT* 2024

Jet properties

Shape of width of the distribution

Single particle spectra

$$
\begin{gathered}
f_{\Gamma}\left(p_{T}, p, b\right)=\frac{b}{\Gamma(p)}\left(b p_{T}\right)^{p-1} e^{-b p_{T}} \\
\frac{d N}{d y} \propto f_{\Gamma}\left(p_{T}, 2, b\right)=b^{2} p_{T} e^{-b p_{T}} \\
\mu_{p_{T}}=\frac{p}{b}, \sigma_{p_{T}}=\frac{\sqrt{p}}{b}
\end{gathered}
$$

Tannenbaum, PLB(498),1-2,Pg.29-34(2001)

```
Confirmed in
JHEP 03 (2012) 053 ALICE
PRC 106, 044915 (2022)_Hughes et al

\section*{\(\boldsymbol{\Sigma} \mathbf{p}_{\boldsymbol{T}}\) of \(\mathbf{N}\) particles \(\rightarrow \mathbf{N}\)-fold convolution:}
\[
\left\{\begin{array}{l}
f_{N}\left(p_{T}, p, b\right)=f_{\Gamma}\left(p_{T}, N p, b\right) \quad \frac{d p T^{\text {total }}}{d y} \propto f_{N}\left(p_{T}, N p, b\right) \\
N=\frac{N_{\text {total }}}{A_{\text {total }}} \pi R^{2} \quad \mu_{\text {total }}=\frac{N p}{b}=N \mu_{p_{T}}, \sigma_{\text {total }}=\frac{\sqrt{N p}}{b}=\sqrt{N} \sigma_{p_{T}}
\end{array}\right.
\]

Add Poissonian fluctuations in \(\mathrm{N}: \sigma_{\text {total }}=\sqrt{N \sigma_{p_{T}}^{2}+N \mu_{p_{T}}^{2}}\)

Add non-Poissonian fluctuations in N due to flow
\[
\sigma_{\text {total }}=\sqrt{N \sigma_{p_{T}}^{2}+\left(N+2 N^{2} \sum_{n} v_{n}^{2}\right) \mu_{p_{T}}^{2}}
\]```

