How to make valid comparisons between data and models

How to make valid comparisons between data and models

How to make valid comparisons between

Acknowledgements

Antonio Da Silva

Patrick Steffanic

Tanner Mengel

Charles Hughes

1. Standard paradigm of background

A jet is what a jet finder finds.

TennGen background generator

Mix TennGen with PYTHIA

- Merge PYTHIA pp collisions into TennGen heavy ion background
- Find charged anti-k_T jets in merged event and geometrically match them back to PYTHIA jets
- Use matched PYTHIA jet momentum as ground truth

3. Background and signal overlap

What happens to jet properties when you cut background?

What happens to jet properties when you cut background?

Silhouette Values

- Average distance between a jet candidate and other jet candidates in its cluster (signal or background) a_i= (d_{i,i})_{i≠i}
- Average distance between jet candidate and jet candidates in the other cluster $b_i = \langle d_{i,j} \rangle$

Silhouette values Example from Wikipedia

Christine Nattrass (UTK), ECT* 2024

Silhouette Values

• Define a distance between two jet candidates to determine how similar they are

Christine Nattrass (UTK), ECT* 2024

What happens to jet properties when you cut background?

PRC108(2023)2,024909

What's left is biased towards quark-like jets

What's left is biased towards quark-like jets

Survivor bias

First use of the term for jets in heavy ion collisions?

Rev. Mod. Phys. 90, 025005 (2018)

- WWII Example: holes planes returning indicate where it's safer to get hit
- We're looking at the jets which remain

4. Machine learning only teaches you what you already know!

Observation – ML does better at background

Observation – ML does better at background

A better method?

• Random cone:

$$p_T^{corr} = p_T^{raw} - \rho_A A$$

$$\sigma_{total} = \sqrt{N \sigma_{p_T}^2 + (N + 2N^2 \sum_n v_n^2) \mu_{p_T}^2}$$

Also confirmed in

PRC 106, 044915 (2022)

Tannenbaum, PLB(498),1-2,Pg.29-34(2001)

• Multiplicity method:

$$p_T^{corr} = p_T^{raw} - \rho_N (N_{tot} - N_{sig})$$
$$\sigma_{total} = \sqrt{N \sigma_{p_T}^2}$$
PRC.108.L021901(2023)6

Algorithm Performance

Christine Nattrass (UTK), ECT* 2024

Follow up to

Arxiv pending

PRC.108.L021901(2023)6

Symbolic regression

- Analytical approximation
- Trained on all input jet features with exponential, trigonometric, and arithmetic operations.

Christine Nattrass (UTK), ECT* 2024

Follow up to PRC.108.L021901(2023)6 Arxiv pending

 $C_1 \cdot p_{T,jet}^{raw}$

 $p_{T,jet}^{raw} \cdot e^{-\lambda_0^{je}}$

A

B

Neural network ≈ Multiplicity method

• Constants learned by PySR are approximately the terms used in multiplicity background subtraction method.

Interpretable ML

- 1. Method must be equivalently applicable to data and simulation.
- 2. Predictions must be understood outside the range of training set.
- 3. Systematic uncertainties can be assessed for predictions.
- 4. Learned relationships can be directly observed.

Machine Learning

Interpretable Machine Learning

Interpretable ML

- 1. Method must be equivalently applicable to data and simulation.
- 2. Predictions must be understood outside the range of training set.
- 3. Systematic uncertainties can be assessed for predictions.
- 4. Learned relationships can be directly observed.

Machine Learning

Interpretable Machine Learning

5. How should you compare to models?

Analysis steps

Analysis steps: Full Monte Carlo

Christine Nattrass (UTK), ECT* 2024

Closure

- Methods
 - Use δp_T method to measure width of fluctuations with varying numbers of leading jets (LJ) discarded
 - Embed PYTHIA event into heavy ion event
- Only embedding leads to full closure in Monte Carlo

ATLAS

Background subtraction method:

- Iterative procedure
 - Calorimeter jets: Reconstruct jets with R=0.2.
 v₂ modulated <Bkgd> estimated by energy in calorimeters excluding jets with at least one tower with
 E_{tower} > <E_{tower}>

Track jets: Use tracks with p_T>4 GeV/c

- Calorimeter jets from above with E>25 GeV and track jets with p_T>10 GeV/c used to estimate background again.
- Calorimeter tracks matching one track with p_T>7 GeV/c or containing a high energy cluster E >7 GeV are used for analysis down to E_{jet} = 20 GeV Phys. Lett. B 719 (2013) 220-241

Constituent biases don't matter that much up here

But they do matter down here!

Snowmass Accord: Apply the same algorithm to data and your model. Then the measurement and the calculation are the same.

Rivet: Apply the same algorithm to data and your model. Then the measurement and the calculation are the same.

This is **also** what people have learned in the soft sector in heavy ion collisions.

The Lisbon Accord

Lisbon Accord proposed that heavy ion analyses adopt RIVET in July 2014

https://www.aworldtotravel.com/things-lisbon-is-famous-fo

. Serie

-

How should you compare to models? Let's not reinvent the wheel!

We Can Do It!

I know it when I see it"

US Supreme Court Justice Potter Stewart, Jacobellis v. Ohio

Definition of Jets in a Large Background July 25-27, 2018

Include anything correlated in definition of jet

Reconsider role of collinear safety

Provide enough details to make comparisons between data and models

Discuss and put effort into the problem

Random cones

Random cones

ALICE Data: JHEP 03 (2012) 053

Width vs multiplicity

Width vs multiplicity

- Some discriminating power between quark-like and gluon-like jets
 - Strained at low momentum, small R

Construct a response matrix in Monte Carlo

Christine Nattrass (UTK), ECT* 2024

Designing a better method

- Jet multiplicity largest mutual information w/jet momentum .
- Background fluctuations are well described by multiplicity fluctuations.

<u>JHEP 03 (2012) 053,</u> <u>Phys. Rev. C 106, 044915 (2022),</u> <u>Physics Letters B 498, 29 (2001).</u>

Definition of Jets in a Large Background July 25-27, 2019

- Organizers: M. Connors, G. Milhano, C. Nattrass, R. Reed, S. Salur
- Spectra conveners: R. Kunnawalkam Elayavalli, Y. Mehtar-Tani (R. Bertens)
- Correlation conveners: J. Noronha-Hostler, J. Huang
- Substructure conveners: Y. Lee, Y. Chien

Extensively discussed the interplay between experimental techniques and theoretical calculations with the aim of **reaching an agreement**^{*} on the way forward for extracting jet measurements from large background events such as those in heavy ion collisions and high luminosity p-p or electron-ion collisions.

*Consensus on some points

62 Registered but due to various visa & travel complications: 45 + several BNL employees attended.

Jet properties

Shape of width of the distribution

