System size dependence of azimuthal correlations at RHIC

Christine Nattrass Yale University Star Collaboration

- Motivation
- Analysis technique
- Results
- Conclusions

Christine Nattrass (STAR Collaboration), Yale University, DNP 10 October 2007, Newport News, Virginia

2

Motivation – particle identification in jets

Motivation – particle identification in jets

- Particle/antiparticle differences
 - Quark vs gluon jets
- Meson/baryon differences
 - Coalescence/ recombination mechanisms
 - Consistent with particle ratios
 - **Testable with identified** particle correlations?

Strange particle identification

- Full azimuthal acceptance
 - Reconstruction of decay vertices possible
 ~95% purity in Cu+Cu high p_T

Strange particle identification

- Full azimuthal acceptance
 - Reconstruction of decay vertices possible ~95% purity in Cu+Cu high p_{T}

2.0 GeV<p,<2.5 GeV, 0-10%

Strange particle identification

- Full azimuthal acceptance
 - Reconstruction of decay vertices possible
 ~95% purity in Cu+Cu high p_T

Motivation - Long-range pseudorapidity correlations

- Long-range pseudorapidity ($\Delta \eta$) correlations observed by STAR in Au+Au at intermediate p_T
- Near side jet peak sits on plateau (*Ridge*)
 - Significant contribution to the near-side yield in central Au+Au
- Look for particle and system size dependencies which might reveal information about production mechanism

8

- *Ridge* previously observed to be flat in Δη in Au+Au
- To determine relative contributions, find yields for near-side, take $\Delta \Phi$ projections in

• -0.75<Δη<0.75 *Jet* + *Ridge*

- 0.75<l∆ηl<1.75 **Ridge**
- Jet = (Jet+Ridge) Ridge*.75/1.75
- *Ridge* = yield from -1.75< $\Delta\eta$ <1.75 – *Jet* yield
- Flow contributions to jet cancel
 - v_2 flat with η for $|\eta| < 1$
 - Phys. Rev. C72, 051901(R) (2005), Phys. Rev. Lett. 94, 122303 (2005)

ΔΦ-Δη Correlations -Method

Q

Determination of yields and errors

3.0 GeV<p_trig<6.0 GeV, 1.5 GeV<p_trig h-h, 0-20% Cu+Cu $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$

- Background: B(1+2 $v_2^{\text{trig}} v_2^{\text{assoc}} \cos(2\Delta \Phi)$)
- Different fit methods for determination of B
 - Zero Yield At Minimum (ZYAM)
 - 1 point, 3 points
 - B as Free parameter (used as best guess)
- v_2 error
 - v₂ measurements in progress
 - Upper bound for v₂ measured
 - $v_2 \approx 10-15\%$ depending on p_T , centrality
 - Estimate for lower bound, near 0
 - $\Lambda, \Lambda, K^0_{S}, \Xi^+, \Xi^- \dots v_2$ not measured
 - Assume quark scaling of h v₂ in Cu+Cu

10

Near-side Yield vs N_{part} Cu+Cu vs Au+Au

Identified triggers:

- Jet yield
 - Nearly flat with N_{part} within errors across d+Au, Cu+Cu, Au+Au
 - No v₂ or background error due to method
 - No trigger dependence within errors
- Ridge yield
 - No *Ridge* within errors in d+Au
 - Rises with N_{part} in Cu+Cu and Au+Au
 - No trigger dependence within errors

11

Near-side rield vs FCU VS AUFAU part

Identified triggers:

- Jet yield
 - Nearly flat with N_{part} within errors across d+Au, Cu+Cu, Au+Au
 No v₂ or background error due to method
 No trigger dependence within errors • Nearly flat with N_{part}

 - No trigger dependence within errors
- Ridge yield
 - No Ridge within errors in d+Au
 - Rises with N_{part} in Cu+Cu and Au+Au
 - No trigger dependence within errors

3.0 GeV/c < $p_{\tau}^{trigger}$ 6.0 GeV/c; 1.5 GeV/c < $p_{\tau}^{associated}$ < $p_{\tau}^{trigger}$

12

Jet yieldvs p_T trigger Identified triggers:

- Jet yield rises with p_T^{trigger} in h-h
 - Yield roughly constant with centrality
 - Central Au+Au and 0-60% Cu+Cu jet yields comparable
- No particle type dependence within error bars

13

Data points at same $p_T^{trigger}$ offset for visibility Jet yields: 10% error added to V⁰ and h triggers to account for track merging, 15% to Ξ triggers

Jet yieldvs p_T^{trigger}

Identified triggers:

- Jet yield rises with p_T^{trigger} in h-h
 - Yield roughly constant with centrality
 - Central Au+Au and 0-60% Cu+Cu jet yields comparable
- No particle type dependence within error bars

Data points at same $p_T^{trigger}$ offset for visibility Jet yields: 10% error added to V⁰ and h triggers to account for track merging, 15% to Ξ triggers

p_T-distribution of associated particles

Identified triggers:

- Ridge spectra similar to the bulk
 - Cu+Cu measurements probably not possible
 - Jet spectra are slightly harder
 - Cu+Cu fit only to h-h
 - Inverse slope T consistent between Cu+Cu and Au+Au

Fits assuming $1/p_T dN/dp_T = A p_T exp(-p_T/T)$

15

p_T-distribution of associated particles

Identified triggers:

- Ridge spectra similar to the bulk
 - Cu+Cu measurements probably not possible
- Jet spectra are slightly harder
 - Cu+Cu fit only to h-h
 - Inverse slope T consistent between Cu+Cu and Au+Au

		10701017	
	nucl	-ex/0/0104/	
	√dp _T (near-side) ⊾	Jet, Δη <0.7 □h-h ΔK ⁰ _S -h ○ Λ/Λ-h	Ridge, Δη <1.7 ■ h-h ▲ K ⁰ _S -h ● Λ/Λ-h
	1/N ^{trigger} 1/p _T dh		
	10 ⁻²	Au+Au	
/		Au+Au √S _{NN} = 200 G - 3 GeV/c < p _T ^{tr/gger} < 6 GeV/c - μ∆η <1.7 STAR preliminary	ev (1)
	10 ⁻³	L	2 2.5 3
	Fit to	$A \exp(-p_T)$	associated (GeV/c)

Trigger particle	T(ridge) MeV	T (jet) MeV
h+/-	438 ± 4 (stat.)	478 ± 8
K ⁰ s	406 ± 20 (stat.)	530 ± 61
٨	416 ± 11 (stat.)	445 ± 49

Fits assuming $1/p_T dN/dp_T = A p_T exp(-p_T/T)$

16

Inclusive slope fit above 2.0 GeV: 355 +/- 6

p_T-distribution of associated particles

Identified triggers:

- *Ridge* spectra similar to the bulk
 - Cu+Cu measurements probably not possible
- Jet spectra are slightly harder
 - Cu+Cu fit only to h-h
 - Inverse slope T consistent between Cu+Cu and Au+Au

Trigger particle	T(ridge) MeV	T (jet) MeV		
h+/-	438 ± 4 (stat.)	478 ± 8		
K ⁰ s	406 ± 20 (stat.)	530 ± 61		
٨	416 ± 11 (stat.)	445 ± 49		

nucl-ex/0701047 ۱/N_{trigger}1/p_TdN/dp_T (near-side) 0_1 1 Ridge, |∆n|<1.7 Jet, [∆ŋ]<0.7 h-h ⊡h-h <mark>≜</mark> K_s⁰-h ΔK_s^0 -h ○ Λ/Λ-h • Λ/Λ-h Cu+Cu @ 200 GeV, 0-10% -side) ■h-h /dp_T (jet near-Λ<u>,</u>Λ-h [▲]K_s⁰-h [∞]Ξ,Ξ-h 10⁻² Au Cu+Cu 10^{-3} 445 ± 20 MeV Fit to A exp **STAR Preliminary** 10⁻³ 0.5 2.53.5p_associated (GeV/c) Fit to A exp $(-p_{T}/T)$ Fits assuming $1/p_T dN/dp_T = A p_T exp(-p_T/T)$

Inclusive slope fit above 2.0 GeV: 355 +/- 6 Christine Nattrass (STAR Collaboration), Yale University, DNP 10 October 2007, Newport News, Virginia

17

Identified associated yield vs p_T^{trigger}

- In Au+Au
 - Jet: $(\Lambda + \overline{\Lambda})/K_{S}^{0} \approx 1$
 - similar to vacuum fragmentation
 - Ridge: $(\Lambda + \overline{\Lambda})/K_{s}^{0} \approx 2$
 - similar to the bulk
- In Cu+Cu
 - Ridge: data not attainable

18

• Jet: $(\Lambda + \Lambda)/K_{s}^{0} \approx 1$

Identified associated yield vs p_T^{trigger}

- In Au+Au
 - Jet: $(\Lambda + \overline{\Lambda})/K_{s}^{0} \approx 1$
 - similar to vacuum fragmentation
 - Ridge: $(\Lambda + \overline{\Lambda})/K_{s}^{0} \approx 2$
 - similar to the bulk
- In Cu+Cu
 - Ridge: data not attainable

19

• Jet: $(\Lambda + \Lambda)/K_s^0 \approx 1$

Conclusions

- Identified triggers
 - Ridge yields
 - Cu+Cu very small
 - Cu+Cu and Au+Au consistent at the same N_{part}
 - Jet yields
 - d+Au, Cu+Cu,Au+Au nearly consistent at the same N_{part}
 - Increases with p_{T trigger}
 - Constant with centrality
 - Independent of system

• Including non-strange, and singly and doubly strange triggers

4.5 5 5.5 6 p_^{trigger}(GeV/c)

- Identified associated
 - $(\Lambda + \Lambda)/K_{s}^{0}$ in *Ridge* similar to inclusive
 - $(\Lambda + \Lambda)/K_{s}^{0}$ in Jet similar to vacuum fragmentation
 - In-Cu+Cu and Au+Au

STAR Collaboration

Argonne National Laboratory - University of Birmingham - Brookhaven National Laboratory - California Institute of Technology - University of California, Davis - University of California - University of California, Los Angeles - Carnegie Mellon University - University of Illinois at Chicago -**Creighton University - Nuclear Physics Institute Prague - Laboratory for** High Energy (JINR) - Particle Physics Laboratory (JINR) - University of Frankfurt - Institute of Physics, Bhubaneswar - Indian Institute of Technology, Mumbai - Indiana University, Bloomington - Institut de **Recherches Subatomiques - University of Jammu - Kent State University** - Institute of Modern Physics, Lanzhou - Lawrence Berkeley National Laboratory - Massachusetts Institute of Technology - Max-Planck-Institut fuer Physik - Michigan State University - Moscow Engineering Physics Institute - City College of New York - NIKHEF and Utrecht University - Ohio State University, Columbus - Panjab University -Pennsylvania State University - Institute of High Energy Physics, Protvino, Russia - Purdue University - Pusan National University, Pusan, **Republic of Korea - University of Rajasthan, Jaipur - Rice University -**Universidade de Sao Paulo - University of Science & Technology of China - Shanghai Institute of Applied Physics - SUBATECH, Nantes, France -Texas A\&M University - University of Texas - Tsinghua University -Valparaiso University - Variable Energy Cyclotron Centre, Kolkata, India - Warsaw University of Technology - University of Washington - Wayne State University - Institute of Particle Physics, CCNU (HZNU), Wuhan -Yale University - University of Zagreb

Backup slides

Christine Nattrass (STAR Collaboration), Yale University, DNP 10 October 2007, Newport News, Virginia

22

Future work

*****Systematics **Reduce** systematic error from v₂ Identified particle v₂ *Expand identified associated analysis ***Coming soon** Ω triggers Comparisons to Au+Au - See B. Abelev's SQM talk *Away-side yields *Energy dependence of Jet and **Ridge yields**

~1000 Ω triggers in central Cu+Cu with p_T>2.5 GeV/c! ~2000 in central Au+Au

Intermediate p_T baryon/ meson enhancement

- Large enhancement of baryon/meson ratio in central collisions relative to p+p
 - in both Au+Au and Cu+Cu
 - reaches maximum at p_T ~ 2-3 GeV/c
 - not unmodified jet fragmentation
- Baryon/meson splitting of R_{cp}
 - strange and non-strange particles show similar suppression

