Quark Matter and High Energy Heavy-Ion Collisions

Christine Nattrass University of Tennessee at Knoxville

Subjects

- Phase diagram of nuclear matter
- Global observables and the initial state
- Hydrodynamical flow
- Partonic energy loss in the medium
- Provocative ideas

The phase diagram of nuclear matter

Dan Cebra Misha Stephanov Swagato Mukherjee Rajan Gupta Grzegorz Stefanek

Christine Nattrass (University of Tennessee at Knoxville), CIPANP 2012

....

Rajan Gupta

Misha Stephanov

Swagato Mukherjee

- Lattice: QCD transition at $\mu_B = 0$ a crossover.
 More in talks by S. Mukherjee and R. Gupta.
- Models (and lattice) suggest the transition becomes 1
- Can we observe the critical point in heav

The RHIC Beam Energy Scan

• Since the original design of RHIC (1985), running at lower energies has been envisioned.

• RHIC has studied running lower energies with a series of test runs: 19.6 GeV Au+Au in 2001, 22.4 GeV Cu+Cu in 2005, and 9.2 GeV Au+Au in 2008.

• In 2009 the RHIC PAC approved a series of six energies to search for the **turn-off of QGP signatures**, the **critical point**, and evidence of a **first order phase transition**.

• The scan was completed during the 2010 and 2011 run periods.

Dan Cebra

Daniel Cebra May 31, 2012 CIPANP2012 St. Petersberg, Florida

Daniel Cebra				
May 31, 2012				

Dan Cebra

Evidence for the onset of deconfinement

 rapid changes in energy dependence of hadron production properties provide evidence for the phase transition

the LHC and RHIC BES points confirm NA49 measurements and trends

<u>Data:</u> NA49: C.Alt et al., PR STAR: L.Kumar, arXi ALICE: J.Schukraft QN	2C 77, 024903 (2008) v:1106:6071 (2011), B.Mohai 12011, M.Floris QM2011, A.1	<u>1</u> N N Toia QM2011	<u>Theoretical predictions:</u> 1.Gazdzicki, M.Gorenstein, APP B30, 2705 (99)
and A.Rustamov, arXiv:120	01.4520	Evidence f in Pb+Pb o	For the onset of deconfinement collisions at $\sqrt{s_{_{NN}}} \approx 8 \text{ GeV}$
Grzegorz Stefanek	CIPANP2012, St.Peters	sburg, Florida, 29 May	Grzegorz Stefanek

CIPANP2012, St.Petersburg, Florida, 29 May

Conclusions

- Ouris-Claon Plann ouris-Claon P
- The RHIC facility has successfully completed a *phase I* beam energy scan.
- Charged particle spectra allow determination of a location on the phase diagram.

Dan Cebra

Daniel Cebra May 31, 2012 CIPANP2012 St. Petersberg, Florida

Take home messages

- Theory:
 - Agreement on critical temperature from Lattice
 - Searches for critical point
- Experiment:
 - Unprecedented wealth of data
 - Some evidence for the critical point... but not yet conclusive
 - RHIC & SPS data agree

Global observables and the initial condition

Bjoern Schenke David Silvermyr Magdelena Malek Sooraj Radhakrishnan

Christine Nattrass (University of Tennessee at Knoxville), CIPANP 2012

IP-Glasma: Initial energy density

Initial energy density at $\tau = 0$:

$$\varepsilon(\tau=0) = \frac{2}{g^2 a^4} (N_c - \operatorname{Re} \operatorname{tr} U_{\Box}) + \frac{1}{a^4} \operatorname{tr} E_{\eta}^2$$

with the longitudinal magnetic and electric energy density.

The plaquette is given by

$$U_{\Box}^{j} = U_{j}^{x} U_{j+\hat{x}}^{y} U_{j+\hat{y}}^{x\dagger} U_{j}^{y\dagger} =$$

arbitrary units

Björn Schenke (BNL)

Bjőrn Schenke

Flow phenomena and Analysis methods Model Study and Results Conclusions **Event Plane (EP) method** Two Particle Correlation (2PC) Method Directed flow

Flow and initial density fluctuations

 $\Rightarrow \frac{dN}{d\phi} \propto 1 + 2 \sum_{n=1}^{\infty} v_n \cos(n(\phi - \Psi_n))$ $v_n = \langle \cos(n(\phi - \Psi_n)) \rangle$

 $\epsilon_n = \frac{\sqrt{\langle r^n \cos(n\phi) \rangle^2 + \langle r^n \sin(n\phi) \rangle^2}}{\langle r^n \rangle}$

- Collective pressure driven expansion. Initial spatial assymetry → final momenutum space anisotrpy
- The flow signal is sensitive to initial geomtry and dynamics of the medium → equation of state, transport coefficeents: shear viscosity

Event Plane Analysis

• EP direction:

 $tan(n\Psi_n) = \frac{\sum_i w_i cos(n\phi_i)}{\sum_i w_i sin(n\phi_i)}$

Correlate EP with tracks

 $v_n = \langle cos(n(\phi - \Psi_n)) \rangle$

Sooraj Radhakrishnan

• Resolution correction $v_n^{actual} = v_n/R$; $R \approx \langle \sqrt{2cos(\Psi_a - \Psi_b)} \rangle$

Sooraj Radhakrishnan

Ensure rapidity gap to reduce jet

correlations

Pb+Pb | Energy density: η dependence

- \bullet ~ 2.1 TeV at η = 0; at least 3 times larger than at RHIC
- \blacksquare BRAHMS data described by Landau hydro; Gaussian with $\sigma = \sqrt{\ln \gamma}$
- for $|\eta| < 5.2$ and centrality 0-2.5%: $dE_T/d\eta$ consistent with a Gaussian with $\sigma_\eta = 3.6 \pm 0.1$
- for $\tau_0 = 1$ fm/c and R = 7.1 fm: energy density of ≈ 15 GeV/fm³
- for central events total transverse energy per pair of participating nucleons is $92\pm$ 6 GeV

arXiv:1205.2488v1 [nucl-ex]

Magdelena Malek

$dNch/d\eta$

N.B.: Approx. same centrality dependence at 7.7 GeV as at 2.76 TeV! [note: no RHIC average here, just PHENIX..]

D. Silvermyr, ORNL

David Silvermyr

$dET/d\eta$

Approx. same centrality dependence at 7.7 GeV as at 2.76 TeV!

D. Silvermyr, ORNL

David Silvermyr

Take home messages

- Theory:
 - Fluctuations in initial state energy density are very important
- Experiment:
 - Energy densities reached at the LHC several times the critical energy density
 - Same dependence of particle multiplicity, transverse energy produced on system size independent of collision energy
- Outlook
 - Advances in calculations will allow us to distinguish between different proposed initial states

Christine Nattrass (University of Tennessee at Knoxville), CIPANP 2012

Flow

Huichao Song Michael Strickland ShinIchi Esumi Monika Sharma Ramiro Debbe

Christine Nattrass (University of Tennessee at Knoxville), CIPANP 2012

Perfect Fluid and Hydrodynamics

2005 – RHIC Discovery of QGP as nearly perfect fluid

2011 – LHC energy density increase more than **x2.6** perfect fluidity persists

Jamie Nagle

$v_2(p_T) < v_2 > comparison between RHIC and LHC$

similar hydro properties

 $\langle v_2 \rangle$ still increases with $\langle p_T \rangle$

CIPANP2012, 2/Jun/2012, St. Petersburg, Florida, USA

Univ. of Tsukuba, ShinIchi Esumi 8

Shinlchi Esumi

QGP viscosity from

 $\eta / s = 0.16 - 0.24$ for MC-KLN initial conditions $\eta / s = 0.08 - 0.16$ for MC-Glauber initial conditions H. Song, S. Bass, U. Heinz, T. Hirano, and C. Shen,

Huichao Song

Identified particle v_2 and $(m_T-m_0)/n_{quark}$ scaling

--- including strangeness/heavy baryons ---

Shinlchi Esumi

CMS $\pi 0$ v2 results compared to PHENIX $\pi 0$ v2

Monika Sharma

CIPANP 2012 St. Petersburg, FL, June 02, 2

All harmonics show the same behavior as when extracted from different bins of transverse momentum; They all increase in value to a maximum at \sim 3-4 GeV/c and then drop into a long tail at high pt. The ordering of the harmonics by magnitude is the same at all centralities except at the very central events.

A short summary

- v_2 is sensitive to η / s

Extraction η / *s* from elliptic flow data using viscous hydro + UrQMD indicates:

$$1 \times (1/4\pi) \le \eta / s \le 3 \times (1/4\pi)$$

Similar averaged QGP viscosity at RHIC and LHC energies

-Relatively larger uncertainties are from initial geometry MC-Glauber: $\eta / s = (1-2) \times (1/4\pi)$ MC-KLN: $\eta / s = (2-3) \times (1/4\pi)$

-Relatively smaller uncertainties are from

initial flow, bulk viscosity, single short hydro vs. e-by-e simulations ...

The perfect fluid

Michael Strickland

The not-so-perfect fluid

Michael Strickland

2nd order Entropy Production approximation

27

Michael Strickland

Take home messages

- Theory:
 - Hydrodynamical flow is a powerful tool to understand the properties of the medium (ie, η/S, T)...
 - ...provided we take all relevant effects into account
- Experiment:
 - Extensive experimental data over a wide range of momenta, particle type
- Outlook
 - Upcoming U+U, Cu+Au results from RHIC valuable for distinguishing models

Jets and energy loss

Christine Nattrass (University of Tennessee at Knoxville), CIPANP 2012

Tomographic probes

Diagnosing QCD medium: (simplified idea) pass a QCD-sensitive probe through it, then look for any modifications due to the medium.

Unknown Medium

Hard Probes of QGP: Jets, W, Z , photons ...

5

Sevil Salur

GEOMETRIC TOMOGRAPHY

Geometry of nuclei and geometry of collisions play essential roles in jet quenching.

Same dynamics, different geometry \rightarrow predictable change in exp. outcome with geometry!

Jinfeng Liao

Photons

Good agreement data – NLO for both pp & PbPb systems.

No modification of initial state:

Hard scattering processes scale with <Ncoll> calculated by Glauber model

Sevil Salur

6

Suppression in A+A

Suppression

LHC hadrons suppressed by up to factor of ~6 at pT~7 GeV. Slow rise and plateau at RAA~ 0.5 in pT~40 – 100 GeV

10

Sevil Salur

Photon+Jet

P. Stankus, Ann. Rev. Nucl. Part. Sci. 55, 517 (2005) X. Wang, Z. Huang, Phys.Rev.C55:3047-3061 (1997)

Photons pass through the medium without interacting so their energy "tags" the original energy of the jet: **Direct measurement of the parton energy loss!**

Sevil Salur

Sevil Salur

31

 $R_{CP} = \frac{1/N_{coll}^{cent}}{1/N_{coll}^{periph}} \frac{1/N_{evnt}^{cent} dN/dE_{T}}{1/N_{evnt}^{periph} dN/dE_{T}}$

A factor of 2 suppression is found between central and peripheral events. No cone size R dependence.

Systematic Error: Bands: Correlated JES, effic., shape, R_{coll} Red Boxes: part. correl. unfolding regularization, JER. Error bars: sqrt of diagonal of covariant matrix. Horizontal width, N_{part} uncertainty R=0.2

Ramiro Debbe

Take home messages

- Theory:
 - Electromagnetic probes described by pQCD.
 Strong probes require energy loss.
- Experiment:
 - Data in the LHC era allow quantitative determination of energy loss in the medium
- Outlook
 - Many more detailed measurements of jets

Christine Nattrass (University of Tennessee at Knoxville), CIPANP 2012

Provocative ideas

Christine Nattrass (University of Tennessee at Knoxville), CIPANP 2012

37/43

v2 follows the pT dependence observed for jet quenching Note the expected inversion of the 1/\pT dependence

Roy A. Lacey, Stony Brook University; CIPANP, May 29th - June 3rd, 2012

38

Roy Lacey

Scaling of high-pT v2

Combined ΔL and $1/\sqrt{pT}$ scaling \Box single universal curve for v2

Roy A. Lacey, Stony Brook University; CIPANP, May 29th - June 3rd, 2012

39

Roy Lacey

Puzzle2: Why is $v_2(p_T)$ <u>constant</u>? NB: this means $v_2(p_T)/\langle v_2 \rangle$ independent of N_{part}, y, \sqrt{s}

Giorgio Torrieri

Take home questions

- What causes these empirical scalings?
- Are we measuring the right things?

Summary

- Quantifying the properties of the QGP
- Better understanding of the initial state
- Unprecedented amount of data from RHIC & the LHC to constrain theories
- More to come from data at RHIC & the LHC

Thank you!

Co-convener: Will Horowitz

Plenary speaker: Jamie Nagle Parallel speakers:

Dan Cebra Misha Stephanov Swagato Mukherjee Rajan Gupta Grzegorz Stefanek Bjoern Schenke David Silvermyr Magdelena Malek Sooraj Radhakrishnan Huichao Song Michael Strickland ShinIchi Esumi Monika Sharma Ramiro Debbe Guang-you Qin Sevil Salur Jinfeng Liao Di-lun Yang Ramiro Debbe Roy Lacey Scott Pratt Paul Stankus Giorgio Torrieri

Christine Nattrass (University of Tennessee at Knoxville), CIPANP 2012