UNIVERSITY PHYSICS

Chapter 7 WORK AND KINETIC ENERGY

PowerPoint Image Slideshow

FIGURE 7.2

Vectors used to define work. The force acting on a particle and its infinitesimal displacement are shown at one point along the path between A and B. The infinitesimal work is the dot product of these two vectors; the total work is the integral of the dot product along the path.

Work done by a constant force.
a) A person pushes a lawn mower with a constant force. The component of the force parallel to the displacement is the work done, as shown in the equation in the figure.
b) A person holds a briefcase. No work is done because the displacement is zero.
c) The person in (b) walks horizontally while holding the briefcase. No work is done because cos is zero.

FIGURE 7.4

Top view of paths for moving a couch.

FIGURE 7.5

Side view of the paths for moving a book to and from a shelf.

Springs

FIGURE 7.7

(a) The spring exerts no force at its equilibrium position. The spring exerts a force in the opposite direction to (b) an extension or stretch, and (c) a compression.

(c)

A curve of $f(x)$ versus x showing the area of an infinitesimal strip, $f(x) d x$, and the sum of such areas, which is the integral of $f(x)$ from x_{1} to x_{2}.

Curve of the spring force $f(x)=-k x$ versus x, showing areas under the line, between x_{A} and x_{B}, for both positive and negative values of x_{A}. When x_{A} is negative, the total area under the curve for the integral in Equation 7.5 is the sum of positive and negative triangular areas. When x_{A} is positive, the total area under the curve is the difference between two negative triangles.

Conservation of energy

FIGURE 7.12

A frictionless track for a toy car has a loop-the-loop in it. How high must the car start so that it can go around the loop without falling off?

FIGURE 7.13

The boards exert a force to stop the bullet. As a result, the boards do work and the bullet loses kinetic energy.

$$
\begin{aligned}
& \text { Power } \\
& P=\frac{d E}{d t} \approx \frac{\Delta E}{\Delta t}
\end{aligned}
$$

FIGURE 7.14

What is the power expended in doing ten pull-ups in ten seconds?

FIGURE 7.15

$$
v=90 \mathrm{~km} / \mathrm{h}
$$

$m=1200 \mathrm{~kg}$

15% grade

We want to calculate the power needed to move a car up a hill at constant speed.

Examples

EXERCISE 11

$W=F d \cos \theta$

EXERCISE 27

openstax

EXERCISE 28

EXERCISE 30

EXERCISE 64

openstax

$4.0 \mathrm{~m} / \mathrm{s}$

EXERCISE 101

This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted.

