
UNIVERSITY PHYSICS
Chapter 9 LINEAR MOMENTUM AND COLLISIONS

PowerPoint Image Slideshow



Linear 
momentum

p⃗=m v⃗

F⃗=d p⃗
dt



FIGURE 9.1

The concepts of impulse, momentum, and center of mass are crucial for a major-league 
baseball player to successfully get a hit. If he misjudges these quantities, he might 
break his bat instead. (credit: modification of work by “Cathy T”/Flickr)



FIGURE 9.2

The velocity and momentum vectors for the 
ball are in the same direction. The mass of 
the ball is about 0.5 kg, so the momentum 
vector is about half the length of the 
velocity vector because momentum is 
velocity time mass. (credit: modification of 
work by Ben Sutherland)



FIGURE 9.3

This supertanker transports a huge mass of oil; as a consequence, it takes a long time 
for a force to change its (comparatively small) velocity. (credit: modification of work by 
“the_tahoe_guy”/Flickr)



FIGURE 9.4

Gas molecules can have very large velocities, but these velocities change nearly 
instantaneously when they collide with the container walls or with each other. This is 
primarily because their masses are so tiny.



Impulse
F⃗=

d p⃗
dt

F⃗=d J⃗
dt



FIGURE 9.5

The change in momentum of an object is proportional to the length of time during which 
the force is applied. If a force is exerted on the lower ball for twice as long as on the 
upper ball, then the change in the momentum of the lower ball is twice that of the upper 
ball.



FIGURE 9.6

A force applied by a tennis racquet to a 
tennis ball over a time interval generates 
an impulse acting on the ball.



FIGURE 9.10

Illustration of impulse-momentum theorem.

a) A ball with initial velocity  and momentum  receives an impulse .

b) This impulse is added vectorially to the initial momentum.

c) Thus, the impulse equals the change in momentum, .

d) After the impulse, the ball moves off with its new momentum .



FIGURE 9.12

a) The initial velocity of the phone is zero, just after the person drops it.

b) Just before the phone hits the floor, its velocity is , which is unknown at the moment, except for its direction, which is 
downward ().

c) After bouncing off the floor, the phone has a velocity , which is also unknown, except for its direction, which is upward 
().



Collisions



FIGURE 9.14

Before the collision, the two billiard balls travel with momenta  and  . The total 
momentum of the system is the sum of these, as shown by the red vector labeled  on 
the left. After the collision, the two billiard balls travel with different momenta  and . The 
total momentum, however, has not changed, as shown by the red vector arrow  on the 
right.



FIGURE 9.15

The two cars together form the system that is to be analyzed. It is important to remember 
that the contents (the mass) of the system do not change before, during, or after the objects 
in the system interact.



FIGURE 9.16

Two lab carts collide and stick together after the collision.



FIGURE 9.17

A superball is dropped to the floor (t0), hits the floor (t1), bounces (t2), and returns to its 
initial height (t3).



FIGURE 9.18

Two identical hockey pucks colliding. The top diagram shows the pucks the instant 
before the collision, and the bottom diagram show the pucks the instant after the 
collision. The net external force is zero.



Examples



EXAMPLE 9.10



FIGURE 9.23

A large truck moving north is about to collide with a small car moving east. The final 
momentum vector has both x- and y-components.



FIGURE 9.24

Graphical addition of momentum vectors. 
Notice that, although the car’s velocity is 
larger than the truck’s, its momentum is 
smaller.



Rutherford 
scattering



FIGURE 9.21

The Thomson and Rutherford models of the atom. The Thomson model predicted that nearly all of the incident 
alpha-particles would be scattered and at small angles. Rutherford and Geiger found that nearly none of the 
alpha particles were scattered, but those few that were deflected did so through very large angles. The results 
of Rutherford’s experiments were inconsistent with the Thomson model. Rutherford used conservation of 
momentum and energy to develop a new, and better model of the atom—the nuclear model.



FIGURE 9.22

a) For two-dimensional momentum 
problems, break the initial momentum 
vectors into their x- and y-
components.

b) Add the x- and y-components 
together separately. This gives you 
the x- and y-components of the final 
momentum, which are shown as red 
dashed vectors.

c) Adding these components together 
gives the final momentum.



Center of mass
r⃗CM=

1
M∑ mi r⃗ i=

1
M∫ ρ ( r⃗ ) r⃗ dV



FIGURE 9.26

As the cat falls, its body performs complicated motions so it can land on its feet, but 
one point in the system moves with the simple uniform acceleration of gravity.



FIGURE 9.27

Finding the center of mass of a system of three different particles.

a) Position vectors are created for each object.

b) The position vectors are multiplied by the mass of the corresponding object.

c) The scaled vectors from part (b) are added together.

d) The final vector is divided by the total mass. This vector points to the center of mass of the system. Note that no mass is actually present at the center 
of mass of this system.



FIGURE 9.30

Finding the center of mass of a uniform hoop. We express the coordinates of a 
differential piece of the hoop, and then integrate around the hoop.



FIGURE 9.31

These exploding fireworks are a vivid example of conservation of momentum and the 
motion of the center of mass.



Rockets



FIGURE 9.32

The space shuttle had a number of 
reusable parts. Solid fuel boosters on 
either side were recovered and refueled 
after each flight, and the entire orbiter 
returned to Earth for use in subsequent 
flights. The large liquid fuel tank was 
expended. The space shuttle was a 
complex assemblage of technologies, 
employing both solid and liquid fuel, and 
pioneering ceramic tiles as reentry heat 
shields. As a result, it permitted multiple 
launches as opposed to single-use 
rockets. (credit: modification of work by 
NASA)



FIGURE 9.33

The rocket accelerates to the right due to the expulsion of some of its fuel mass to the left. 
Conservation of momentum enables us to determine the resulting change of velocity. The 
mass m is the instantaneous total mass of the rocket (i.e., mass of rocket body plus mass of 
fuel at that point in time). (credit: modification of work by NASA/Bill Ingalls)



More examples



EXERCISE 25

A person (m) is riding in a car moving at v when the car runs into a bridge 
abutment (see the following figure).
        a. Calculate the average force on the person if he is stopped by a padded 
dashboard that compresses an average of X cm.
        b. Calculate the average force on the person if he is stopped by an air 
bag that compresses an average of Y cm.



EXERCISE 27

A cruise ship with a mass of  M strikes a pier at a speed of v. It comes to rest after 
traveling X, damaging the ship, the pier, and the tugboat captain’s finances. 
Calculate the average force exerted on the pier using the concept of impulse. (Hint: 
First calculate the time it took to bring the ship to rest, assuming a constant force.)



EXERCISE 33

A hockey puck of mass m is sliding due east on a frictionless table with a 
speed of v. Suddenly, a constant force of magnitude F and direction due north 
is applied to the puck for t. Find the north and east components of the 
momentum at the end of the interval.



EXERCISE 35

Train cars are coupled together by being bumped into one another. 
What is their final velocity?  



EXERCISE 63

Find the center of mass of the three-mass system.



EXERCISE 76

Find the center of mass of a sphere of mass M and radius R and a cylinder of mass m, radius r, and height h 
arranged as shown below.



This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International 
license; it may be reproduced or modified but must be attributed to OpenStax, Rice 

University and any changes must be noted.
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